New Fabry-Perot Fiber-Optic Sensors for Structural and Geotechnical Monitoring Applications

Author(s):  
P. Choquet ◽  
R. Leroux ◽  
F. Juneau

A new line of fiber-optic sensors suited for structural and geotechnical monitoring purposes is presented. A Fabry-Perot strain gauge is contained in each of the new sensors introduced here: four embedded and surface-type strain gauges and one type of temperature gauge. Described here are the working and reading principles of the basic Fabry-Perot strain gauge. One of the gauge’s features that allows for temperature-compensated or noncompensated measurements is described, and the various sensors constructed around the gauge are presented. These newly developed sensors exhibit high accuracy and repeatability, as illustrated by various calibration tests reported here.

Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1567 ◽  
Author(s):  
Kivilcim Yuksel ◽  
Damien Kinet ◽  
Karima Chah ◽  
Christophe Caucheteur

Instrumentation techniques, implementation and installation methods are major concerns in today’s distributed and quasi-distributed monitoring applications using fiber optic sensors. Although many successful traffic monitoring experiments have been reported using Fiber Bragg Gratings (FBGs), there has been no standardized solution proposed so far to have FBG seamlessly implemented in roads. In this work, we investigate a mobile platform including FBG sensors that can be positioned on roads for the purpose of vehicle speed measurements. The experimental results prove the efficiency of the proposed platform, providing a perspective toward weigh-in-motion systems.


1993 ◽  
Author(s):  
Sergey A. Egorov ◽  
Yuri A. Ershov ◽  
Igor G. Likhachiev ◽  
Anatoly N. Mamaev

2007 ◽  
Vol 16 (5) ◽  
pp. 1931-1935
Author(s):  
Abdeq M Abdi ◽  
Alan R Kost
Keyword(s):  

2012 ◽  
Vol 37 (22) ◽  
pp. 4672 ◽  
Author(s):  
Jiajun Tian ◽  
Qi Zhang ◽  
Thomas Fink ◽  
Hong Li ◽  
Wei Peng ◽  
...  

Author(s):  
Alexander Sergeevich Bordyug

The article considers the procedure of torque control, which is very popular in a wide variety of industries with many design features. In marine power engineering the problems of determining the forces, torque on the shaft and power are solved by means of torsiometers with torque sensors. The most widely used torque sensors are of capacitive, induction, strain gauge and photoelectric types. It has been stated that there are limitations in the process of torque control due to the susceptibility of systems to the electromagnetic interference, lack of a high degree of protection for electrical equipment and necessary recalibration. Fiber optic systems have found application in torque measurement systems in the oil and gas and aerospace industries. The use of such systems on ships is more expensive in comparison with the technologies used today, for example, the systems based on strain gauges. It has been proposed to use an inexpensive optical measuring system based on the Pound-Drever-Hall technique with using a foil-clad strain gauge and an aluminum torsion rod. There has been illustrated the system of torque control, the phase graphs for the Fabry-Perot resonator and the graph of the resonator transmission spectrum are presented, the reflection coefficient value is given. A method for measuring the phase of a reflected beam from a Fabry-Perot resonator is being considered, the injection current of a laser is modulated by means of an electric oscillator to generate side stripes in the electric field of a laser beam. The carried out studies and calculations contribute to improving the reliability of the coastal power system; the possibility of their use in marine electrical systems has been proved.


2021 ◽  
Vol 20 (4) ◽  
pp. 005-016
Author(s):  
Damian Nykiel

This work includes a comparison of the methods of monitoring the deformations of a structure on the example of a flat plate slab test. Classic ESG (electrofusion strain gauges) and modern DFOS (distributed fiber optic sensors) were compared. During the research, both types of sensors were used on some of the reinforcing bars. The study aims to indicate the differences between the compared monitoring methods, both in terms of the obtained results and their utility values.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 188
Author(s):  
Manuel Bertulessi ◽  
Daniele Fabrizio Bignami ◽  
Ilaria Boschini ◽  
Marco Brunero ◽  
Maddalena Ferrario ◽  
...  

We present a case study of a Structural Health Monitoring (SHM) hybrid system based on Brillouin Distributed Fiber Optic Sensors (D-FOS), Vibrating Wire (VW) extensometers and temperature probes for an existing historical water penstock bridge positioned in a mountain valley in Valle d’Aosta Region, Northwestern Italy. We assessed Brillouin D-FOS performances for this kind of infrastructure, characterized by a complex structural layout and located in a harsh environment. A comparison with the more traditional strain monitoring technology offered by VW strain gauges was performed. The D-FOS strain cable has been bonded to the concrete members using a polyurethane-base adhesive, ensuring a rigid strain transfer. The raw data from all sensors are interpolated on a unique general timestamp with hourly resolution. Strain data from D-FOS and VW strain gauges are then corrected from temperature effects and compared. Considering the inherent differences between the two monitoring technologies, results show a good overall matching between strain time series collected by D-FOS and VW sensors. Brillouin D-FOS proves to be a good solution in terms of performance and economic investment for SHM systems on complex infrastructures such as hydropower plants, which involve extensive geometry combined with the need for detailed and continuous strain monitoring.


Sign in / Sign up

Export Citation Format

Share Document