scholarly journals Голі амеби в ґрунтах Харківської області (Україна)

Author(s):  
М. Пацюк

У ґрунтах Харківської області (Україна) нами ідентифіковано 17 видів голих амеб. Це такі види: Rhizamoeba sp., Saccamoeba stagnicola Page, 1974, Hartmannella vermiformis Page, 1967, Deuteramoeba mycophaga (Pussard et al., 1980) Page, 1988, Thecamoeba striata (Penard, 1890) Schaeffer, 1926, Stenamoeba stenopodia (Page, 1969) Smirnov et al., 2007, Mayorella cantabrigiensis Page, 1983, Mayorella sp., Korotnevella sp., Vexillifera sp., Vannella sp., Ripella platypodia Smirnov, Nassonova, Chao et Cavalier-Smith, 2007, Acanthamoeba sp. (1), Cochliopodium sp., Vahlkampfia sp. (1), Vahlkampfia sp. (2), Naegleria gruberi Schardinger, 1899. Серед ідентифікованих видів найбільш поширеними виявились M. cantabrigiensis, Acanthamoeba sp. (1), Cochliopodium sp., N. gruberi, Vexillifera sp., Vahlkampfia sp. (1), Vahlkampfia sp. (2), S. stenopodia, найменш поширеними – D. mycophaga, Korotnevella sp., Rhizamoeba sp., Mayorella sp., середнє положення за частотою трапляння займають види H. vermiformis, Vannella sp., S. stagnicola, T. striata, R. platypodia. Найбільша кількість видів характерна для ґрунтів лісів (16 видів), найменша – для ґрунтів галявин (9 видів), у ґрунтах чагарників траплялось 11 видів голих амеб. Ідентифіковані нами види належать до 11 морфотипів: розгалуженого (Rhizamoeba sp.), моноподіального (S. stagnicola, H. vermiformis), політактичного (D. mycophaga), стріатного (T. striata), язикоподібного (S. stenopodia), майорельного (M. cantabrigiensis, Mayorella sp.), дактилоподіального (Korotnevella sp., Vexillifera sp.), віялоподібного (Vannella sp., R. platypodia), акантоподіального (Acanthamoeba sp. (1)), лінзоподібного (Cochliopodium sp.), еруптивного (Vahlkampfia sp. (1), Vahlkampfia sp. (2), N. gruberi). За видовим складом населення голих амеб поділяється на два комплекси: з ґрунтів лісів і ґрунтів галявин та чагарників. Таку ж подібність демонструють і морфотипи голих амеб. На формування видових комплексів амеб та їх морфотипів за результатами непараметричного багатовимiрного шкалювання (MDS) впливають в більшій мірі вологість та кислотність ґрунтів, в меншій мірі – температурний фактор.

1966 ◽  
Vol 42 (2) ◽  
pp. 245-255 ◽  
Author(s):  
M. AVERNER ◽  
C. FULTON

2010 ◽  
Vol 76 (21) ◽  
pp. 7144-7153 ◽  
Author(s):  
Rinske M. Valster ◽  
Bart A. Wullings ◽  
Dick van der Kooij

ABSTRACT Legionella pneumophila proliferates in aquatic habitats within free-living protozoa, 17 species of which have been identified as hosts by using in vitro experiments. The present study aimed at identifying protozoan hosts for L. pneumophila by using a biofilm batch test (BBT). Samples (600 ml) collected from 21 engineered freshwater systems, with added polyethylene cylinders to promote biofilm formation, were inoculated with L. pneumophila and subsequently incubated at 37°C for 20 days. Growth of L. pneumophila was observed in 16 of 18 water types when the host protozoan Hartmannella vermiformis was added. Twelve of the tested water types supported growth of L. pneumophila or indigenous Legionella anisa without added H. vermiformis. In 12 of 19 BBT flasks H. vermiformis was indicated as a host, based on the ratio between maximum concentrations of L. pneumophila and H. vermiformis, determined with quantitative PCR (Q-PCR), and the composition of clone libraries of partial 18S rRNA gene fragments. Analyses of 609 eukaryotic clones from the BBTs revealed that 68 operational taxonomic units (OTUs) showed the highest similarity to free-living protozoa. Forty percent of the sequences clustering with protozoa showed ≥99.5% similarity to H. vermiformis. None of the other protozoa serving as hosts in in vitro studies were detected in the BBTs. In several tests with growth of L. pneumophila, the protozoa Diphylleia rotans, Echinamoeba thermarum, and Neoparamoeba sp. were identified as candidate hosts. In vitro studies are needed to confirm their role as hosts for L. pneumophila. Unidentified protozoa were implicated as hosts for uncultured Legionella spp. grown in BBT flasks at 15°C.


Cell Reports ◽  
2018 ◽  
Vol 25 (3) ◽  
pp. 537-543.e3 ◽  
Author(s):  
Michiel L. Bexkens ◽  
Verena Zimorski ◽  
Maarten J. Sarink ◽  
Hans Wienk ◽  
Jos F. Brouwers ◽  
...  

1984 ◽  
Vol 98 (2) ◽  
pp. 449-456 ◽  
Author(s):  
C Walsh

When Naegleria gruberi flagellates were extracted with nonionic detergent and stained by the indirect immunofluorescence method with AA-4.3 (a monoclonal antibody against Naegleria beta-tubulin), flagella and a network of cytoskeletal microtubules (CSMT) were seen. When Naegleria amebae were examined in the same way, no cytoplasmic tubulin-containing structures were seen. Formation of the flagellate cytoskeleton was followed during the differentiation of amebae into flagellates by staining cells with AA-4.3. The first tubulin containing structures were a few cytoplasmic microtubules that formed at the time amebae rounded up into spherical cells. The formation of these microtubules was followed by the appearance of basal bodies and flagella and then by the formation of the CSMT. The CSMT formed before the cells assumed the flagellate shape. In flagellate shaped cells the CSMT radiate from the base of the flagella and follow a curving path the full length of the cell. Protein synthetic requirements for the formation of CSMT were examined by transferring cells to cycloheximide at various times after initiation. One-half the population completed the protein synthesis essential for formation of CSMT 61 min after initiation of the differentiation. This is 10 min after the time when protein synthesis for formation of flagella is completed and 10-15 min before the time when the protein synthesis necessary for formation of the flagellate shape is completed.


2006 ◽  
Vol 72 (4) ◽  
pp. 2428-2438 ◽  
Author(s):  
Vincent Thomas ◽  
Katia Herrera-Rimann ◽  
Dominique S. Blanc ◽  
Gilbert Greub

ABSTRACT Free-living amoebae (FLA) are ubiquitous organisms that have been isolated from various domestic water systems, such as cooling towers and hospital water networks. In addition to their own pathogenicity, FLA can also act as Trojan horses and be naturally infected with amoeba-resisting bacteria (ARB) that may be involved in human infections, such as pneumonia. We investigated the biodiversity of bacteria and their amoebal hosts in a hospital water network. Using amoebal enrichment on nonnutrient agar, we isolated 15 protist strains from 200 (7.5%) samples. One thermotolerant Hartmannella vermiformis isolate harbored both Legionella pneumophila and Bradyrhizobium japonicum. By using amoebal coculture with axenic Acanthamoeba castellanii as the cellular background, we recovered at least one ARB from 45.5% of the samples. Four new ARB isolates were recovered by culture, and one of these isolates was widely present in the water network. Alphaproteobacteria (such as Rhodoplanes, Methylobacterium, Bradyrhizobium, Afipia, and Bosea) were recovered from 30.5% of the samples, mycobacteria (Mycobacterium gordonae, Mycobacterium kansasii, and Mycobacterium xenopi) were recovered from 20.5% of the samples, and Gammaproteobacteria (Legionella) were recovered from 5.5% of the samples. No Chlamydia or Chlamydia-like organisms were recovered by amoebal coculture or detected by PCR. The observed strong association between the presence of amoebae and the presence of Legionella (P < 0.001) and mycobacteria (P = 0.009) further suggests that FLA are a reservoir for these ARB and underlines the importance of considering amoebae when water control measures are designed.


1977 ◽  
Vol 26 (1) ◽  
pp. 359-371
Author(s):  
F.L. Schuster ◽  
J.S. Clemente

Exposure of axenic cultures of the amoeboflagellate Naegleria gruberi EGs to the thymidine analogue 5-bromo-2′-deoxyuridine (BrdU) resulted in the induction of virus-like particles (VLP) and various structures associated with their development and presumed transmission. Previously, VLP induction could be accomplished only by growing amoebae in the presence of living bacteria as a food source. Addition of excess thymidine along with BrdU did not block induction of particles. This account demonstrates that the EGs-VLP system responded to BrdU as do a number of mammalian cell lines harbouring latent viruses, and provides the basis for future work on the infectivity of the VLPs for other amoebae as well as tissue culture cells.


2011 ◽  
Vol 41 (9) ◽  
pp. 915-924 ◽  
Author(s):  
Fred R. Opperdoes ◽  
Johan F. De Jonckheere ◽  
Aloysius G.M. Tielens
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document