scholarly journals Weak and strong convergence results for sum of two monotone operators in reflexive Banach spaces

2020 ◽  
Vol 21 (1) ◽  
pp. 281-304
Author(s):  
Ferdinard U. Ogbuisi ◽  
◽  
Lateef O. Jolaoso ◽  
Yekini Shehu ◽  
◽  
...  
Author(s):  
Kifayat Ullah ◽  
Faiza Ayaz ◽  
Junaid Ahmad

In this paper, we prove some weak and strong convergence results for generalized [Formula: see text]-nonexpansive mappings using [Formula: see text] iteration process in the framework of Banach spaces. This generalizes former results proved by Ullah and Arshad [Numerical reckoning fixed points for Suzuki’s generalized nonexpansive mappings via new iteration process, Filomat 32(1) (2018) 187–196].


Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 522 ◽  
Author(s):  
Javid Ali ◽  
Faeem Ali ◽  
Puneet Kumar

In this paper, we study a three step iterative scheme to approximate fixed points of Suzuki’s generalized non-expansive mappings. We establish some weak and strong convergence results for such mappings in uniformly convex Banach spaces. Further, we show numerically that the considered iterative scheme converges faster than some other known iterations for Suzuki’s generalized non-expansive mappings. To support our claim, we give an illustrative numerical example and approximate fixed points of such mappings using Matlab program. Our results are new and generalize several relevant results in the literature.


Author(s):  
Javid Ali ◽  
Faeem Ali ◽  
Puneet Kumar

In this paper, we study a three step iterative scheme to approximate fixed points of Suzuki's generalized non-expansive mappings. We establish some weak and strong convergence results for such mappings in uniformly convex Banach spaces. Further, we show numerically that iterative scheme (1.8) converges faster than some other known iterations for Suzuki's generalized non-expansive mappings. To support our claim, we give an illustrative example and approximate fixed points of such mappings using Matlab program. Our results are new and generalize several relevant results in the literature.


Axioms ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 110
Author(s):  
Kifayat Ullah ◽  
Junaid Ahmad ◽  
Manuel de la Sen

The purpose of this research work is to prove some weak and strong convergence results for maps satisfying (E)-condition through three-step Thakur (J. Inequal. Appl.2014, 2014:328.) iterative process in Banach spaces. We also present a new example of maps satisfying (E)-condition, and prove that its three-step Thakur iterative process is more efficient than the other well-known three-step iterative processes. At the end of the paper, we apply our results for finding solutions of split feasibility problems. The presented research work updates some of the results of the current literature.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Junaid Ahmad ◽  
Kifayat Ullah ◽  
Muhammad Arshad ◽  
Zhenhua Ma

In this paper, an efficient new iterative method for approximating the fixed point of Suzuki mappings is proposed. Some important weak and strong convergence results of the proposed iterative method are established in the setting of Banach space. An example illustrates the theoretical outcome.


Sign in / Sign up

Export Citation Format

Share Document