scholarly journals The study of the rheological behavior and the oxidation stability of some cosmetic emulsions

2021 ◽  
Vol 66 (4) ◽  
pp. 283-295
Author(s):  
Adela Manea ◽  
◽  
Andra Tamaș ◽  
Sabina Nițu ◽  
Delia Perju ◽  
...  
TAPPI Journal ◽  
2019 ◽  
Vol 18 (4) ◽  
pp. 233-241
Author(s):  
CHENGGUI SUN ◽  
RICHARD CHANDRA ◽  
YAMAN BOLUK

This study investigates the use of pretreatment and enzymatic hydrolysis side streams and conversion to lignocellulose nanofibers. We used a steam-exploded and partial enzymatic hydrolyzed hardwood pulp and an organosolv pretreated softwood pulp to prepare lignocellulose nanofibers (LCNF) via microfluidization. The energies applied on fibrillation were estimated to examine the energy consumption levels of LCNF production. The energy consumptions of the fibrillation processes of the hardwood LCNF production and the softwood LCNF production were about 7040-14080 kWh/ton and 4640 kWh/ton on a dry material basis, respectively. The morphology and dimension of developed hardwood and softwood LCNFs and the stability and rheological behavior of their suspensions were investigated and are discussed.


2014 ◽  
Vol 14 (4) ◽  
pp. 227-242
Author(s):  
Darina Ivanova Zheleva ◽  
Vassil Ivanov Samichkov

2017 ◽  
Vol 71 (8) ◽  
pp. 850-854
Author(s):  
Kazutaka Kasuga ◽  
Koichi Tadaki ◽  
Kaori Sasaki

2019 ◽  
Author(s):  
Wan-Ting (Grace) Chen ◽  
Zhenwei Wu ◽  
Buchun Si ◽  
Yuanhui Zhang

This study aims to produce renewable diesel and biopriviliged chemicals from microalgae that can thrive in wastewater environment. <i>Spirulina</i> (SP) was converted into biocrude oil at 300ºC for a 30-minute reaction time via hydrothermal liquefaction (HTL). Next, fractional distillation was used to separate SP-derived biocrude oil into different distillates. It was found that 62% of the viscous SP-derived biocrude oil can be separated into liquids at about 270ºC (steam temperature of the distillation). Physicochemical characterizations, including density, viscosity, acidity, elemental compositions, higher heating values and chemical compositions, were carried out with the distillates separated from SP-derived biocrude oil. These analyses showed that 15% distillates could be used as renewable diesel because they have similar heating values (43-46 MJ/kg) and carbon numbers (ranging from C8 to C18) to petroleum diesel. The Van Krevelan diagram of the distillates suggests that deoxygenation was effectively achieved by fractional distillation. In addition, GC-MS analysis indicates that some distillates contain biopriviliged chemicals like aromatics, phenols and fatty nitriles that can be used as commodity chemicals. An algal biorefinery roadmap was proposed based on the analyses of different distillates from the SP-derived biocrude oil. Finally, the fuel specification analysis was conducted with the drop-in renewable diesel, which was prepared with 10 vol.% (HTL10) distillates and 90 vol.% petroleum diesel. According to the fuel specification analysis, HTL10 exhibited a qualified lubricity (<520 µm), acidity (<0.3 mg KOH/g) and oxidation stability (>6 hr), as well as a comparable net heat of combustion (1% lower), ash content (29% lower) and viscosity (17% lower) to those of petroleum diesel. Ultimately, it is expected that this study can provide insights for potential application of algal biocrude oil converted via HTL.


Sign in / Sign up

Export Citation Format

Share Document