scholarly journals Construcción y caracterización de un cristal artificial elástico

2021 ◽  
Author(s):  
◽  
Filiberto Ramírez Ramírez

In order to achieve the main objective, a design of a supercell or basic cell consisting of an array of elastic units will be made. This supercell will be obtained from a locally periodic structure of coupled blocks, whose central block will be deformed; later, the one-dimensional elastic artificial crystal will be built, which will be characterized experimentally and understood from a strong mooring model. The locally proposed system consists of a set of vibrating bars, identical, coupled together, imitating a set of " defectsin a one-dimensional periodic network and with a periodic coupling. It is expected that the acoustic wave amplitudes of this system show similar characteristics to the wave functions of an electron strongly linked in an eective potential generated by a one-dimensional network of atoms. In the locally periodic system that we propose the vibrating elastic units will be coupled together by means of locally periodic rods; since, in these we can control the resonance frequencies and the same frequency of normal resonance. Furthermore, in these rods, the lower energy vibration modes can be isolated from the rest of the excited states. When the resonance frequency of the elastic unit (defect) is in the gap of the coupler (locally periodic rod) the wave amplitude will be located. To generate the emergence of a new band in the second torsion spectrum gap, from an originally periodic system, using the transfer matrix method for torsional waves, six elastic structures formed by 1, 2, 3 and up to 6 were designed. coupled supercell The neighboring levels of the emerging band is separated to a maximum distance of 100 Hz to facilitate its detection. This band is in the frequency range of 26450 to 26650 kHz.

2010 ◽  
Vol 663-665 ◽  
pp. 725-728 ◽  
Author(s):  
Yuan Ming Huang ◽  
Qing Lan Ma ◽  
Bao Gai Zhai ◽  
Yun Gao Cai

Considered the model of the one-dimensional photonic crystals (1-D PCs) with double defects, the refractive indexes (n2’, n3’ and n2’’, n3’’) of the double defects were 2.0, 4.0 and 4.0, 2.0 respectively. With parameter n2=1.5, n3=2.5, by theoretical calculations with characteristic matrix method, the results shown that for a certain number (14 was taken) of layers of the 1-D PCs, when the double defects abutted, there was a defect band gap in the stop band gap, while when the double defects separated, there occurred two defect band gaps in the stop band gap; besides, with the separation of the two defects, the transmittance of the double defect band gaps decreased gradually. In addition, in this progress, the frequency range of the stop band gap has a little increase from 0.092 to 0.095.


2015 ◽  
Vol 71 (10) ◽  
pp. 929-935 ◽  
Author(s):  
Hyun-Chul Kim ◽  
Ja-Min Gu ◽  
Seong Huh ◽  
Chul-Hyun Yo ◽  
Youngmee Kim

Two new one-dimensional CuIIcoordination polymers (CPs) containing theC2h-symmetric terphenyl-based dicarboxylate linker 1,1′:4′,1′′-terphenyl-3,3′-dicarboxylate (3,3′-TPDC), namelycatena-poly[[bis(dimethylamine-κN)copper(II)]-μ-1,1′:4′,1′′-terphenyl-3,3′-dicarboxylato-κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), andcatena-poly[[aquabis(dimethylamine-κN)copper(II)]-μ-1,1′:4′,1′′-terphenyl-3,3′-dicarboxylato-κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours,i.e.violet plates for (I) and blue needles for (II), both of which were analysed by X-ray crystallography. The 3,3′-TPDC bridging ligands coordinate the CuIIions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one-dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutuallytranspositions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one-dimensional coordination polymer chains, forming a two-dimensional network in (I) and a three-dimensional network in (II).


CISM journal ◽  
1990 ◽  
Vol 44 (1) ◽  
pp. 9-18 ◽  
Author(s):  
Michael G. Sideris

The geoid and its horizontal derivatives, the deflections of the vertical, play an important role in the adjustment of geodetic networks. In the one-dimensional (1D) case, represented typically by networks of orthometric heights, the geoid provides the reference surface for the measurements. In the two-dimensional (2D) adjustment of horizontal control networks, the geoidal undulations N and deflections of the vertical ξ, η are needed for the reduction of the measured quantities onto the reference ellipsoid. In the three-dimensional (3D) adjustment, N and ξ, η are basically required to relate geodetic and astronomic quantities. The paper presents the major gravimetric methods currently used for predicting ξ, η and N, and briefly intercompares them in terms of accuracy, efficiency, and data required. The effects of N, ξ, η on various quantities used in the ID, 2D, and 3D network adjustments are described explicitly for each case and formulas are given for the errors introduced by either neglecting or using erroneous N, ξ, η in the computational procedures.


2010 ◽  
Vol 663-665 ◽  
pp. 737-740 ◽  
Author(s):  
Yuan Ming Huang ◽  
Bao Gai Zhai ◽  
Yun Gao Cai ◽  
Qing Lan Ma

The model of the one-dimensional photonic crystals (1-D PCs) with a centered defect with increasing number of layers was considered, and characteristic matrix method was used to calculate the transmittance spectra of the 1-D PCs. From the transmittance spectra, it shown that during the course of the number N of the layers of 1-D PCs’ one side symmetrical increased from 2 to 16, there occurred defect band gap in the stop band gap, when N upped to 16 , the defect band gap disappeared; besides, the defect band gap is at the frequencies around 0.30. In addition, in the progress of N increased from 3 to 16, the defect band gap reduced from the frequency range 0.0570 to 0.00, and the transmittance declined from 73.59% to 13.94% in the defect band gap.


2021 ◽  
Vol 26 (4) ◽  
pp. 306-315
Author(s):  
Yiliang Fan ◽  
Zhenlin Ji

The one-dimensional (1-D) analytical approach is developed to predict and analyze the acoustic attenuation performance of two-pass perforated hybrid mufflers in the presence of mean flow. The expressions of complex acoustic wavenumber and impedance of long fiber glass wool are presented by using the impedance tube measurement and curve fitting. The 1-D approaches as well as the fitting expressions are validated by comparing the predicted and measured transmission loss of two-pass perforated hybrid mufflers with a different Mach number. Results illustrate that the 1-D predictions agree well with measurements below the plane wave cut-off frequency and deviate in higher frequency range. The influences of geometric parameters including the lengths of extended tubes, perforations on the right bulkhead and the outlet tube, and mean flow on the acoustic attenuation behavior of the hybrid mufflers are examined.


Sign in / Sign up

Export Citation Format

Share Document