Survey on Testing of BPEL Processes

2014 ◽  
Vol 13 (7) ◽  
pp. 4633-4637
Author(s):  
Gurpreet Kaur ◽  
Mrs. Gaganpreet Kaur

Software testing is very important phase in any development Life Cycle. The test Case generation is critical task in any type of testing. The automation of test case generation is necessary to reduce cost and effort incurred in the testing of large software. Testing of the BPEL processes is new area of research and the automation of the test cases is necessary in order to find bugs in the processes and reduce the cost of the  testing business  processes .This paper focuses on the survey of the testing techniques used to test the BPEL processes.

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1779
Author(s):  
Wanida Khamprapai ◽  
Cheng-Fa Tsai ◽  
Paohsi Wang ◽  
Chi-En Tsai

Test case generation is an important process in software testing. However, manual generation of test cases is a time-consuming process. Automation can considerably reduce the time required to create adequate test cases for software testing. Genetic algorithms (GAs) are considered to be effective in this regard. The multiple-searching genetic algorithm (MSGA) uses a modified version of the GA to solve the multicast routing problem in network systems. MSGA can be improved to make it suitable for generating test cases. In this paper, a new algorithm called the enhanced multiple-searching genetic algorithm (EMSGA), which involves a few additional processes for selecting the best chromosomes in the GA process, is proposed. The performance of EMSGA was evaluated through comparison with seven different search-based techniques, including random search. All algorithms were implemented in EvoSuite, which is a tool for automatic generation of test cases. The experimental results showed that EMSGA increased the efficiency of testing when compared with conventional algorithms and could detect more faults. Because of its superior performance compared with that of existing algorithms, EMSGA can enable seamless automation of software testing, thereby facilitating the development of different software packages.


Author(s):  
N. Sánchez-Gómez ◽  
L. Morales-Trujillo ◽  
J. J. Gutiérrez ◽  
J. Torres-Valderrama

The use of smart contract augurs a world without intermediaries because the code and the agreements contained therein exist across a distributed, decentralized blockchain network. In software engineering, this collaboration is usually represented by using business process models and smart contracts can be used to implement business collaborations in general and inter-organizational business processes. The validation of this contract and the assurance of its quality are critical for its right application. Early testing in smart contract definition is the fact of this paper. The paper discusses the possibility to use transformation protocols to obtain derived artefacts like test case definitions and smart contract code scaffolds. Generation of derived artefacts significantly reduces the number of defects before deploying the smart contract code in the blockchain network. Transformations protocols are created using model-based software development and modelling techniques. This approach allows to simplify and improve the management and execution of collaborative business processes. This would allow, in addition, the application of systematic mechanisms to evaluate and validate the smart contract and, particularly, the application of early testing techniques which would help to reduce the number of defects and, ultimately, the cost of the final review.


2014 ◽  
Vol 568-570 ◽  
pp. 1488-1496
Author(s):  
Ming Gang Xu ◽  
Yong Min Mu ◽  
Zhi Hua Zhang ◽  
Ang Liu

Automatic test case generation has been a hotspot and a difficult problem in the software testing, Accurately and efficiently generate test cases can improve the efficiency of software testing. Java programs have many characteristics such as encapsulation, inheritance, polymorphism and so on, it is convenient for software design and development, but to bring automated testing some difficulties. This article on the Java program of automatic test case generation method is studied and presents a framework for automatic generation of test cases. With this framework, test case suite will be generated quickly and accurately. Experimental results show that automatic Java test case generation framework can quickly and accurately generate test cases , reduce labor costs and improve efficiency.


Author(s):  
Tianning Zhang ◽  
Xingqi Wang ◽  
Dan Wei ◽  
Jinglong Fang

Test case prioritization is one of the most useful activities in testing. Most existing test case prioritization techniques are based on code coverage, which requires access to source code. However, code-based testing comes late in the software development life cycle, when errors are detected, the cost of testing is very high. Therefore, in this paper, we provide a test case prioritization technique based on Unified Modeling Language (UML) model, built before coding, to detect errors as earlier as possible and reduce the cost of modification. The technique consists of the following main parts: (1) using C&K metrics to estimate the error probability of class; (2) using dependences, obtained from the model slicing, to estimate error severity; (3) generating test case priority from error probability and severity, then prioritizing the test case. With our technique, test engineers need the UML model only and the test cases can be prioritized automatically. To evaluate our technique, we applied our technique to unmanned aerial vehicles (UAV) flight control system and performed test case prioritization. The results show that the error can be detected effectively and stability can be increased significantly as compared to the current code-based techniques.


Author(s):  
Nahid Anwar ◽  
Susmita Kar

Software testing is the process of running an application with the intent of finding software bugs (errors or other defects). Software applications demand has pushed the quality assurance of developed software towards new heights. It has been considered as the most critical stage of the software development life cycle. Testing can analyze the software item to identify the disparity between actual and prescribed conditions and to assess the characteristics of the software. Software testing leads to minimizing errors and cut down software costs. For this purpose, we discuss various software testing techniques and strategies. This paper aims to study diverse as well as improved software testing techniques for better quality assurance purposes.


Author(s):  
Mamdouh Alenezi ◽  
Mohammed Akour ◽  
Hamid Abdul Basit

Ensuring the security of the software has raised concerns from the research community which triggered numerous approaches that tend to eliminate it. The process of ensuring the security of software includes the introduction of processes in the Software Development Life Cycle where one of them is testing after the software is developed. Manually testing software for security is a labor-intensive task. Therefore, it is required to automate the process of testing by generating test cases by automated techniques. In this paper, we review various software security test case generation approaches and techniques. We try to explore and classify the most eminent techniques for test case generation. The techniques are summarized and presented briefly to covers all researches work that has been done in the targeted classification. Moreover, this paper aims to depict the sound of security in the current state of the art of test case generation. The findings are summarized and discussed where the opportunities and challenges are revealed narratively. Although the paper intends to provide a comprehensive view of the research in test case generation, there was a noticeable lack in the test case generation from the security perspectives


Author(s):  
Gayatri Nayak ◽  
Mitrabinda Ray

Test case prioritization is a technical method to reorder the execution of test cases to reduce regression testing costs. This paper has examined various existing techniques that are widely used and suggests improving test case prioritization process after finding many research gaps. These research gaps are collected after doing a thorough study on 206 papers after surfing 310 papers on test case generation and prioritization techniques. These papers are collected from different electronic databases such as IEEE Explore, Science Direct, ACM Library, Springer, Wiley, and Elsevier. The authors have targeted to make a statistical record to show research contribution on test case prioritization at three levels of software development life cycle. This survey shows that 20.87% of papers are contributing for TCP at the requirement phase, 38.83% of papers are contributing for TCP at the design phase, 40.29% of papers are contributing to TCP at the coding phase. The inference of this study cites many future recommendations for the current researchers in the conclusion section.


2013 ◽  
Vol 336-338 ◽  
pp. 2063-2070 ◽  
Author(s):  
Yu Ying Wang ◽  
Ping Chen

Based on CP-nets models, an approach of test case generation is proposed for BPEL processes, with which the semantic of BPEL concurrence is well dealt. Firstly, a web service composition which coded in BPEL language is expressed as CP-net models on which depth-first traversal works immediately, and result in sequence test paths obtained. After merging these sequence test paths into program executable units (PEU for short), constraint set of these units is solved and formed into test cases. Finally an application of the approach is illustrated with an example, which more efficiency shown with 7 test units less than 9 test path appear in reference available for same example.


Software testing is one of the vital steps in software development life cycle. Test case generation is the first process in software testing which takes a lot of time, cost and effort to build an effective product from the start. Automatic test case generation is the best way to address this issue and model-based test case generation approach would be suitable for this automation process. One way to generate test cases automatically is by generating test cases from Unified Modeling Language (UML) models. The challenge with the existing test case generation techniques using UML models is that they provide a single view, meaning that the techniques capture a single aspect of the system, such as structural or behavioral but not both. In this paper, we have successfully developed a technique that automatically generates test cases which capture both structural and behavioral views of the system. These test cases can help to discover software faults early in the software development cycle. Finally, we conducted an experiment by comparing our technique with a manual process. The results show that the proposed technique can produce same test cases as manually writing test cases of the same system model but this technique saves a lot of time, effort and cost as well.


Sign in / Sign up

Export Citation Format

Share Document