scholarly journals Segmentation of Handwritten Text Document Written in Devanagri Script for Simple character, skewed character and broken character

2013 ◽  
Vol 8 (1) ◽  
pp. 686-691
Author(s):  
Vneeta Rani ◽  
Dr.Vijay Laxmi

OCR (optical character recognition) is a technology that is commonly used for recognizing patterns artificial intelligence & computer machine. With the help of OCR we can convert scanned document into editable documents which can be further used in various research areas. In this paper, we are presenting a character segmentation technique that can segment simple characters, skewed characters as well as broken characters. Character segmentation is very important phase in any OCR process because output of this phase will be served as input to various other phase like character recognition phase etc. If there is some problem in character segmentation phase then recognition of the corresponding character is very difficult or nearly impossible.

2019 ◽  
Vol 8 (1) ◽  
pp. 50-54
Author(s):  
Ashok Kumar Bathla . ◽  
Sunil Kumar Gupta .

Optical Character Recognition (OCR) technology allows a computer to “read” text (both typed and handwritten) the way a human brain does.Significant research efforts have been put in the area of Optical Character Segmentation (OCR) of typewritten text in various languages, however very few efforts have been put on the segmentation and skew correction of handwritten text written in Devanagari which is a scripting language of Hindi. This paper aims a novel technique for segmentation and skew correction of hand written Devanagari text. It shows the accuracy of 91% and takes less than one second to segment a particular handwritten word.


Optical Character Recognition or Optical Character Reader (OCR) is a pattern-based method consciousness that transforms the concept of electronic conversion of images of handwritten text or printed text in a text compiled. Equipment or tools used for that purpose are cameras and apartment scanners. Handwritten text is scanned using a scanner. The image of the scrutinized document is processed using the program. Identification of manuscripts is difficult compared to other western language texts. In our proposed work we will accept the challenge of identifying letters and letters and working to achieve the same. Image Preprocessing techniques can effectively improve the accuracy of an OCR engine. The goal is to design and implement a machine with a learning machine and Python that is best to work with more accurate than OCR's pre-built machines with unique technologies such as MatLab, Artificial Intelligence, Neural networks, etc.


Author(s):  
Siddharth Salar Et.al

Handwritten text acknowledgment is yet an open examination issue in the area of Optical Character Recognition (OCR). This paper proposes a productive methodology towards the advancement of handwritten text acknowledgment frameworks. The primary goal of this task is to create AI calculation to empower element and information extraction from records with manually written explanations, with an, expect to distinguish transcribed words on a picture. The main aim of this project is to extract text, this text can be handwritten text or it can machine printed text and convert it into computer understandable or wNe can say computer editable format. To implement thais project we have used PyTesseract which is an open-sourcemOCR engine used to recognize handwritten text and OpenCV a library in python used to solve computer vision problems. So the input image is executed in various steps, first there is pre-processing of an image then there is text localization after that there is character segmentation and character recognition and finally we have post-processing               of image. Further image processingalgorithms can also be used to deal with the multiple characters input in a single image, tilt image, or rotated image. The prepared framework gives a normal precision of more than 95 % with the concealed test picture.


Optical Character Recognition has been an active research area in computer science for several years. Several research works undertaken on various languages in India. In this paper an attempt has been made to find out the percentage of accuracy in word and character segmentation of Hindi (National language of India) and Odia is one of the Regional Language mostly spoken in Odisha and a few Eastern India states. A comparative article has been published under this article. 10 sets of each printed Odia and Devanagari scripts with different word limits were used in this study. The documents were scanned at 300dpi before adopting pre-processing and segmentation procedure. The result shows that the percentage of accuracy both in word and character segmentation is higher in Odia language as compared to Hindi language. One of the reasons is the use of headers line in Hindi which makes the segmentation process cumbersome. Thus, it can be concluded that the accuracy level can vary from one language to the other and from word segmentation to that of the character segmentation.


Author(s):  
M A Mikheev ◽  
P Y Yakimov

The article is devoted to solving the problem of document versions comparison in electronic document management systems. Systems-analogues were considered, the process of comparing text documents was studied. In order to recognize the text on the scanned image, the technology of optical character recognition and its implementation — Tesseract library were chosen. The Myers algorithm is applied to compare received texts. The software implementation of the text document comparison module was implemented using the solutions described above.


2021 ◽  
pp. 894-911
Author(s):  
Bhavesh Kataria, Dr. Harikrishna B. Jethva

India's constitution has 22 languages written in 17 different scripts. These materials have a limited lifespan, and as generations pass, these materials deteriorate, and the vital knowledge is lost. This work uses digital texts to convey information to future generations. Optical Character Recognition (OCR) helps extract information from scanned manuscripts (printed text). This paper proposes a simple and effective solution of optical character recognition (OCR) Sanskrit Character from text document images using long short-term memory (LSTM) and neural networks of Sanskrit Characters. Existing methods focuses only upon the single touching characters. But our main focus is to design a robust method using Bidirectional Long Short-Term Memory (BLSTM) architecture for overlapping lines, touching characters in middle and upper zone and half character which would increase the accuracy of the present OCR system for recognition of poorly maintained Sanskrit literature.


2021 ◽  
Author(s):  
Michael Schwartz ◽  

Many companies have tried to automate data collection for handheld Digital Multimeters (DMM) using Optical Character Recognition (OCR). Only recently have companies tried to perform this task using Artificial Intelligence (AI) technology, Cal Lab Solutions being one of them in 2020. But when we developed our first prototype application, we discovered the difficulties of getting a good value with every measurement and test point.A year later, lessons learned and equipped with better software, this paper is a continuation of that AI project. In Beta-,1 we learned the difficulties of AI reading segmented displays. There are no pre-trained models for this type of display, so we needed to train a model. This required the testing of thousands of images, so we changed the scope of the project to a continual learning AI project. This paper will cover how we built our continuous learning AI model to show how any lab with a webcam can start automating those handheld DMMS with software that gets smarter over time.


Author(s):  
Ahmed Hussain Aliwy ◽  
Basheer Al-Sadawi

<p><span>An optical character recognition (OCR) refers to a process of converting the text document images into editable and searchable text. OCR process poses several challenges in particular in the Arabic language due to it has caused a high percentage of errors. In this paper, a method, to improve the outputs of the Arabic Optical character recognition (AOCR) Systems is suggested based on a statistical language model built from the available huge corpora. This method includes detecting and correcting non-word and real words error according to the context of the word in the sentence. The results show that the percentage of improvement in the results is up to (98%) as a new accuracy for AOCR output. </span></p>


Sign in / Sign up

Export Citation Format

Share Document