scholarly journals Localization of Sensor Nodes using Flooding in Wireless Sensor Networks

2013 ◽  
Vol 9 (3) ◽  
pp. 1153-1161
Author(s):  
Basavaraj K Madagouda ◽  
Varsha M Patil ◽  
Pradnya Godse

The accuracy of localization is a significant criterion to evaluate the practical utility of localization algorithm in wireless sensor networks (WSN). In mostly localization algorithms, one of the main methods to improve localization accuracy is to increase the number of anchor nodes. But the number of anchor nodes is always limited because of the hardware restrict, such as cost, energy consumption and so on. In this paper, we propose a novel which uses forwarding a query message in flooding technique for localization using anchor nodes and once a node localized it acts as virtual anchor node and it helps to localize remaining sensor nodes. It is scheme to increase and upgrade the virtual anchor nodes, while the real number of physical anchors is the same as before.

2017 ◽  
Vol 13 (09) ◽  
pp. 69 ◽  
Author(s):  
Lianjun Yi ◽  
Miaochao Chen

<p>Wireless sensor networks (WSN), as a new method of information collection and processing, has a wide range of applications. Since the acquired data must be bound with the location information of sensor nodes, the sensor localization is one of the supporting technologies of wireless sensor networks. However, the common localization algorithms, such as APIT algorithm and DV-Hop algorithm, have the following problems: 1) the localization accuracy of beacon nodes is not high; 2) low coverage rate in sparse environment. In this paper, an enhanced hybrid 3D localization algorithm is designed with combining the advantages of APIT algorithm and DV-Hop algorithm. The proposed hybrid algorithm can improve the localization accuracy of the beacon nodes in dense environments by reducing the triangles in the triangle interior point test (PIT) and selecting good triangles. In addition, the algorithm can combine the advantages of APIT algorithm and DV-Hop algorithm localization algorithm to calculate the unknown node coordinates, and also improve the location coverage of the beacon nodes in sparse environment. Simulation results show that the proposed hybrid algorithm can effectively improve the localization accuracy of beacon nodes in the dense environment and the location coverage of beacon nodes in sparse environment.</p>


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4152
Author(s):  
Sana Messous ◽  
Hend Liouane ◽  
Omar Cheikhrouhou ◽  
Habib Hamam

As localization represents the main backbone of several wireless sensor networks applications, several localization algorithms have been proposed in the literature. There is a growing interest in the multi-hop localization algorithms as they permit the localization of sensor nodes even if they are several hops away from anchor nodes. One of the most famous localization algorithms is the Distance Vector Hop (DV-Hop). Aiming to minimize the large localization error in the original DV-Hop algorithm, we propose an improved DV-Hop algorithm in this paper. The distance between unknown nodes and anchors is estimated using the received signal strength indication (RSSI) and the polynomial approximation. Moreover, the proposed algorithm uses a recursive computation of the localization process to improve the accuracy of position estimation. Experimental results show that the proposed localization technique minimizes the localization error and improves the localization accuracy.


Author(s):  
Rekha Goyat ◽  
Mritunjay Kumar Rai ◽  
Gulshan Kumar ◽  
Hye-Jin Kim ◽  
Se-Jung Lim

Background: Wireless Sensor Networks (WSNs) is considered one of the key research area in the recent. Various applications of WSNs need geographic location of the sensor nodes. Objective: Localization in WSNs plays an important role because without knowledge of sensor nodes location the information is useless. Finding the accurate location is very crucial in Wireless Sensor Networks. The efficiency of any localization approach is decided on the basis of accuracy and localization error. In range-free localization approaches, the location of unknown nodes are computed by collecting the information such as minimum hop count, hop size information from neighbors nodes. Methods: Although various studied have been done for computing the location of nodes but still, it is an enduring research area. To mitigate the problems of existing algorithms, a range-free Improved Weighted Novel DV-Hop localization algorithm is proposed. Main motive of the proposed study is to reduced localization error with least energy consumption. Firstly, the location information of anchor nodes is broadcasted upto M hop to decrease the energy consumption. Further, a weight factor and correction factor are introduced which refine the hop size of anchor nodes. Results: The refined hop size is further utilized for localization to reduces localization error significantly. The simulation results of the proposed algorithm are compared with other existing algorithms for evaluating the effectiveness and the performance. The simulated results are evaluated in terms localization error and computational cost by considering different parameters such as node density, percentage of anchor nodes, transmission range, effect of sensing field and effect of M on localization error. Further statistical analysis is performed on simulated results to prove the validation of proposed algorithm. A paired T-test is applied on localization error and localization time. The results of T-test depicts that the proposed algorithm significantly improves the localization accuracy with least energy consumption as compared to other existing algorithms like DV-Hop, IWCDV-Hop, and IDV-Hop. Conclusion: From the simulated results, it is concluded that the proposed algorithm offers 36% accurate localization than traditional DV-Hop and 21 % than IDV-Hop and 13% than IWCDV-Hop.


Author(s):  
Shrawan Kumar ◽  
D. K. Lobiyal

Obtaining precise location of sensor nodes at low energy consumption, less hardware requirement, and little computation is a challenging task. As one of the well-known range-free localization algorithm, DV-Hop can be simply implemented in wireless sensor networks, but it provides poor localization accuracy. Therefore, in this paper, the authors propose an enhanced DV-Hop localization algorithm that provides good localization accuracy without requiring additional hardware and communication messages in the network. The first two steps of proposed algorithm are similar to the respective steps of the DV-Hop algorithm. In the third step, they first separate error terms (correction factors) of the estimated distance between unknown node and anchor node. The authors then minimize these error terms by using linear programming to obtain better location accuracy. Furthermore, they enhance location accuracy of nodes by introducing weight matrix in the objective function of linear programming problem formulation. Simulation results show that the performance of our proposed algorithm is superior to DV-Hop algorithm and DV-Hop–based algorithms in all considered scenarios.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaogang Qi ◽  
Xiaoke Liu ◽  
Lifang Liu

Wireless sensor networks (WSNs) are widely used in various fields to monitor and track various targets by gathering information, such as vehicle tracking and environment and health monitoring. The information gathered by the sensor nodes becomes meaningful only if it is known where it was collected from. Considering that multilateral algorithm and MDS algorithm can locate the position of each node, we proposed a localization algorithm combining the merits of these two approaches, which is called MA-MDS, to reduce the accumulation of errors in the process of multilateral positioning algorithm and improve the nodes’ positioning accuracy in WSNs. It works in more robust fashion for noise sparse networks, even with less number of anchor nodes. In the MDS positioning phase of this algorithm, the Prussian Analysis algorithm is used to obtain more accurate coordinate transformation. Through extensive simulations and the repeatable experiments under diverse representative networks, it can be confirmed that the proposed algorithm is more accurate and more efficient than the state-of-the-art algorithms.


2013 ◽  
Vol 303-306 ◽  
pp. 201-205
Author(s):  
Shao Ping Zhang

Localization technology is one of the key supporting technologies in wireless sensor networks. In this paper, a collaborative multilateral localization algorithm is proposed to localization issues for wireless sensor networks. The algorithm applies anchor nodes within two hops to localize unknown nodes, and uses Nelder-Mead simplex optimization method to compute coordinates of the unknown nodes. If an unknown node can not be localized through two-hop anchor nodes, it is localized by anchor nodes and localized nodes within two hops through auxiliary iterative localization method. Simulation results show that the localization accuracy of this algorithm is very good, even in larger range errors.


2012 ◽  
Vol 562-564 ◽  
pp. 1234-1239
Author(s):  
Ming Xia ◽  
Qing Zhang Chen ◽  
Yan Jin

The beacon drifting problem occurs when the beacon nodes move accidentally after deployment. In this occasion, the localization results of sensor nodes in the network will be greatly affected and become inaccurate. In this paper, we present a localization algorithm in wireless sensor networks in beacon drifting scenarios. The algorithm first uses a probability density model to calculate the location reliability of each node, and in localization it will dynamically choose nodes with highest location reliabilities as beacon nodes to improve localization accuracy in beacon drifting scenarios. Simulation results show that the proposed algorithm achieves its design goals.


2014 ◽  
Vol 651-653 ◽  
pp. 387-390 ◽  
Author(s):  
Fu Bin Zhou ◽  
Shao Li Xue

As an important application of Internet of Things , Wireless Sensor Networks utilized in surveillance and other case.Localization of nodes in wireless sensor networks is the prerequisite and base of target tracking in some surveillance applications, so localization error of sensor nodes is a key. However, due to limited energy, unreliable link and limited communication ranges of sensor nodes, high accurate positioning is difficult to achieve, which made it hot and full of challenging for wireless sensor nodes to localize without any auxiliary facilities. Range-based localization algorithm , could achieve good accuracy but require measuring devices, thus it is not appropriate for large-scale wireless sensor networks.So range-free localization algorithms are more popular.This paper analyses the algorithms in range-free localization,and proposed Advanced Sequence-Based Localization algorithm to improve the performance of positioning algorithm in wireless sensor network.


2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Yujia Sun ◽  
Xiaoming Wang ◽  
Jiyan Yu ◽  
Yu Wang

A novel iterative localization algorithm with high accuracy and low anchor node dependency for large-scale wireless sensor networks is proposed in this paper. At each iteration, blind nodes are located using a weighted linear least squares-based algorithm. To prevent errors in the blind nodes from propagating and accumulating throughout the network, an anchor geometric feature-based error control mechanism is used to select the nodes that participate in the localization and to estimate the localization confidence. The simulation results show that the algorithm can be used when only a few anchor nodes are involved. This algorithm is more advanced than traditional methods, which often require a large number of well-placed anchor nodes to operate appropriately. By optimizing the decision parameter v of the algorithm, the average localization error of the algorithm is approximately 0.43 meters. When the ratio of anchor nodes (the ratio of the number of anchor nodes to the number of sensor nodes in the network) is 1.25% (i.e., 5 anchor nodes for 400 sensor nodes), the received signal strength indicator (RSSI) variance is 8 dBm, and the radio range is 50 meters. A comparison of the proposed algorithm with global localization methods, including multidimensional scaling (MDS), semidefinite programming (SDP), and shortest-path access (SPA), shows that the proposed algorithm achieves higher location accuracy and stability when the number of anchor nodes is varied. The efficiency of the proposed localization algorithm is evaluated in a real sensor network, and the accuracy is high and robust to radio channel variance.


2011 ◽  
Vol 135-136 ◽  
pp. 814-819
Author(s):  
Xue Cun Yang ◽  
Yuan Bin Hou ◽  
Ling Hong Kong

Aimed at the people localization in the underground mine, the bounding-inbox localization algorithm of wireless sensor networks based on RSSI is presented in this paper, which combines the merits of range-based and range-free localization methods. And, signal strength information between fixed anchor nodes and unknown ones is taken as the weights of bounding-inbox algorithm to calculate. The result of simulating experiment in underground mine environment proves that this algorithm is of less computing cost and can improve the localization accuracy.


Sign in / Sign up

Export Citation Format

Share Document