scholarly journals Development and Validation of Enantiomeric Purity of Montelukast by SFC Method on Amylose Based Stationary Phase

2008 ◽  
Vol 4 (3) ◽  
pp. 518-524
Author(s):  
Vijaya Lakshmi Maddala ◽  
Kameswararao Ch ◽  
Srinivasulu Polisetty ◽  
Sai Venkata Srinivas Koduri ◽  
P.C. Ray

A new Supercritical fluid liquid chromatographic (SFC) method has been developed in normal-phase conditions for the determination of enantiomeric purity of Montelukast sodium (S,E)-2-(1-((1-3-(2-(7-chloroquinolin-2-yl)vinyl)phenyl)-3-(2-(2-hydroxypropan-2-yl)phenyl)propylthio)ethyl) cyclopropyl) acetic acid (R-isomer) (Anti asthmatic drug) in bulk drugs and in dosage forms. The sample was screened on the analytical SFC to determine the best column for the separation. The screening conditions are Column: Chiralpak AS-H (250 mm x 4.6 mm, 5 μm) column using a mobile phase system containing Supercritical fluid (Co2) and 2-Propanol in the ratio (85:15% v/v). The mobile-phase compositions and the differences in separation capability of the method is noted. The resolution between two enantiomers is found to be greater than 1.5. The SFC method for the separation of enantiomers of Montelukast is proved Accurate, Precise, Linear and robust. Relative standard deviation of retention times and peak areas were better than 0.2% and 0.4%, respectively, for precision. 

2013 ◽  
Vol 12 (7) ◽  
pp. 518-524
Author(s):  
Vijaya Lakshmi Maddala ◽  
Kameswararao Ch ◽  
Srinivasulu Polisetty

A new Supercritical fluid liquid chromatographic (SFC) method has been developed in normal-phase conditions for the determination of enantiomeric purity of Montelukast sodium (S,E)-2-(1-((1-3-(2-(7-chloroquinolin-2-yl)vinyl)phenyl)-3-(2-(2-hydroxypropan-2-yl)phenyl)propylthio)ethyl) cyclopropyl) acetic acid (R-isomer) (Anti asthmatic drug) in bulk drugs and in dosage forms. The sample was screened on the analytical SFC to determine the best column for the separation. The screening conditions are Column: Chiralpak AS-H (250 mm x 4.6 mm, 5 μm) column using a mobile phase system containing Supercritical fluid (Co2) and 2-Propanol in the ratio (85:15% v/v). The mobile-phase compositions and the differences in separation capability of the method is noted. The resolution between two enantiomers is found to be greater than 1.5. The SFC method for the separation of enantiomers of Montelukast is proved Accurate, Precise, Linear and robust. Relative standard deviation of retention times and peak areas were better than 0.2% and 0.4%, respectively, for precision. 


Author(s):  
Suresh Babu Bodempudi ◽  
Ravi Chandra Babu Rupakula ◽  
Konda S. Reddy ◽  
Mahesh Reddy Ghanta

Objective: The main objective of present study was to Isolate, characterize and validate a reverse phase high performance liquid chromatographic method was validated for quantification of bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine in Olanzapine drug substance; it decreases the mental disorders in human body. The method is specific, rapid, precise and accurate for the separation and determination of bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine in Olanzapine drug substance form.Methods: The bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine of Olanzapine was resolved on a Zorbax RX-C 8, 250 mm X 4.6 mm, 5 micron column (L-1) using a mobile phase system containing 0.03 M sodium dodecyl sulphate in water pH 2.5 with 1 N sodium hydroxide solution and acetonitrile in the ratio of (Mobile phase A-52:48 v/v) and (Mobile phase B-buffer and Acetonitrile 30:70 v/v) by using the gradient program. The mobile phase was set at a flow rate of 1.5 ml/min and the volume injected was 20μl for every injection. The detection wavelength was set at 220 nm and the column temperature was set at 35 °C.Results: The proposed method was productively applied for the quantitative determination of bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo [f]azulene)]-1,4-piperazine in Olanzapine drug substance form. The linear regression analysis data for calibration plots showed a good linear relationship over a concentration range of 0.025to 0.903 µg/ml for bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine, 0.081-0.608 µg/ml for Olanzapine. The mean values of the correlation coefficient were 0.999 and 0.999 for bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine and Olanzapine. The method was validated as per the ICH guidelines. The detection limit (LOD) was about 0.007 µg/ml, 0.024 µg/ml and quantitation limit (LOQ) was about 0.024 µg/ml, 0.081 µg/ml for bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine and Olanzapine. The relative standard deviation was found to be 1.64 % and 2.18 % for bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine and Olanzapine.Conclusion: The validated HPLC method and the statistical analysis showed that the method is repeatable and selective for the estimation of the bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine of the Olanzapine drug substance.


2003 ◽  
Vol 86 (2) ◽  
pp. 229-235 ◽  
Author(s):  
Dorota Kowalczuk ◽  
Hanna Hopkała

Abstract Derivative UV-spectrophotometric and liquid chromatographic (LC) methods for fleroxacin determination were validated. In the spectrophotometric assay, first-, second-, third-, and fourth-order measurements were applied with the use of peak–zero and peak–peak techniques. The linear correlation between amplitude of the peak and concentration of the examined drug ranged from 2.0 to 12.0 μg/mL. An isocratic LC analysis was performed on a Purospher ODS column with an acidic mobile phase containing tetrabutylammonium hydroxide. Measurements were made at a wavelength of 285 nm with 4-aminobenzoic acid (PABA) as internal standard. The calibration curve was linear (r = 0.9999) in the studied range of concentration (1.0–10.0 μg/mL). The accuracy (mean recovery, about 100%), precision (relative standard deviation <1%), selectivity, and sensitivity of the elaborated methods were satisfactory.


1986 ◽  
Vol 69 (6) ◽  
pp. 1026-1030
Author(s):  
Bruce C Flann ◽  
Bruce A Lodge

Abstract The validation of a liquid chromatographic procedure suitable for the determination of calcitriol and alfacalcidol in their respective formulations labeled to contain at least 0.25 μ.g drug per unit is described. The capsule content is diluted and chromatographed in 15-20 min on silica columns (5 μm) with a mobile phase of hexane-tetrahydrofuranmethylene dichloride-isopropanol (72 + 12 + 12 + 4, v/v) with detection at 254 nm. The calibration curve is linear. Recoveries of “spikes” averaged 101% with a standard deviation of 2%. Precision was better than 1.5%.


2009 ◽  
Vol 92 (3) ◽  
pp. 846-854 ◽  
Author(s):  
Phyllis Wilson

Abstract Progesterone and estrogens are hormones produced in the human body that are essential for regulating many vital functions. The three major estrogens produced by women are estriol, estradiol, and estrone. Progesterone is a naturally occurring hormone in both men and women. Pharmaceuticals containing estrogens alone or estrogens in combination with progesterone are commonly used in therapy. Patients requiring unique combinations of the drugs rely on pharmacies to compound the ingredients. In order to assess the potency of drugs containing combinations of estrogens and progesterone, a method was developed to determine all four ingredients simultaneously. The liquid chromatographic method utilized a Bondapak C18 column with an isocratic mobile phase of acetonitrilewater (50 + 50, v/v) at a flow rate of 1.0 mL/min and temperature of 30C. Under these conditions, the order of elution was estriol, estradiol, and estrone, followed by progesterone. UV detection was at 205 nm to monitor elution of the estrogens, then switched to 270 nm to monitor progesterone. The method was applied to the analysis of pharmacy-compounded drugs containing combinations of the hormones. Validation studies demonstrated that the method is accurate and precise.


1987 ◽  
Vol 70 (3) ◽  
pp. 578-582 ◽  
Author(s):  
Madduri Veerabhadrarao ◽  
Mandayam S Narayan ◽  
Omprakash Kapur ◽  
Chilukuri Suryaprakasa Sastry

Abstract Liquid chromatographic methods are described for the separation and determination of non-nutritive sweeteners, namely, acesulfame, aspartame, saccharin, and dulcin; preservatives such as benzoic acid and p-hydroxybenzoic acid; and caffeine and vanillin in ready-toserve beverages, ice candy, ice cream, squash beverage, tomato sauce, and dry beverage mix samples. These additives are separated on a ^Bondapak C18 column using methanol-acetic acid-water (20 + 5 + 75) as mobile phase and detected by UV absorption at 254 nm. Caffeine, vanillin, dulcin, and benzoic acid can be analyzed quickly by using a mobile phase of methanol-acetic acid-water (35 + 5 + 60). Aspartame can be separated in the presence of caffeine and vanillin by using the mobile phase pH 3 acetate buffer-methanol (95 + 5). Retention factors and minimum detectable limits are described. The percentage error and the percent relative standard deviation for 6 replicate samples ranged from 0.3 to 2.8 and from 1.64 to 3.60, respectively. Recovery of additives added to the foods named and analyzed by the direct method and by extraction ranged from 98.0 to 100.6% and from 91.6 to 101.8%, respectively. The proposed LC techniques are simple, rapid, and advantageous because all the additives can be detected in a single step, which makes it useful for the routine analysis of various food products.


1982 ◽  
Vol 65 (5) ◽  
pp. 1063-1065
Author(s):  
Stanley E Roberts

Abstract A high performance liquid chromatographic (HPLC) method is described for the quantitative determination of primidone in tablets. A ground tablet sample is diluted directly in the mobile phase, at a concentration of about 1 mg/mL of primidone, mixed and deaerated, and filtered. The resulting solution is then quantitated by HPLC. The average spike recoveries for the 50 mg and 250 mg tablets were 101.2% and 99.0%, respectively. The average recovery for an authentic mixture formulated at the 250 mg level was 100.1% with a relative standard deviation of 0.45%.


2018 ◽  
Vol 16 (2) ◽  
pp. 165-172 ◽  
Author(s):  
Asma Rahman ◽  
Mohammad Rashedul Haque ◽  
M Muhibur Rahman ◽  
Mohammad A Rashid

In the present study a rapid, accurate and precise chiral HPLC method was developed and validated for enantiomeric separation of racemate citalopram and escitalopram according to the guidelines of United States of Pharmacopeia (USP) and International Conference on Harmonization (ICH). The chiral chromatographic separation was achieved with ammonium acetate/ ethanol/ 2-propanol/ methylene dichloride (100 : 150 : 70 : 30, v/v) at a flow rate of 0.5 ml/min using a chiral CD-PH column. The HPLC analyses were monitored at 254 nm. The method showed a good linearity with regression coefficient (r2) of 0.998 in the range of 20.0-70.0 μg/ml for escitalopram. The detection limit (LOD), quantitation limit (LOQ) and average percentage of recovery for escitalopram were found to be 2.54, 7.68 μg/ml and 100.28% to 102.86%, respectively. The percentage of relative standard deviation (%RSD) for intra- and inter- day precision were found as 0.16% and 0.09%, respectively. The established method proved as reproducible with a %RSD value of less than 2 and having the robustness within specified limit. The present study also showed the enantiomeric purity or excess (%ee) of seven pharmaceutical preparations of escitalopram. Thus the proposed chiral method can be applied for the enantiomeric purity determination of escitalopram formulations.Dhaka Univ. J. Pharm. Sci. 16(2): 165-172, 2017 (December)


2017 ◽  
Vol 1 (2) ◽  
pp. 1-8
Author(s):  
Milena Cristina Ribeiro Souza Magalhães ◽  
Alisson Samuel Portes Caldeira ◽  
Hanna De Sousa Rocha Almeida ◽  
Sílvia Ligório Fialho ◽  
Armando Da Silva Cunha Junior

A reversed-phase high-performance liquid chromatographic (HPLC) method was developed and validated for the determination of encapsulation efficiency of zidovudine in nanoparticules. The method was carried out in isocratic mode using 0.040M sodium acetate: methanol: acetonitrile: glacial acetic acid (880:100:20:2) as mobile phase, a C8 column at 25ºC and UV detection at 240 nm. The method was linear (r2 ˃ 0.99) over the range of 25.0-150.0 μg/mL, precise (RSD ˂ 5%), accurate (recovery = 100.5%), robust and selective. The validated HPLC-UV method can be successfully applied to determine the rate of zidovudine in nanoparticules.


1986 ◽  
Vol 69 (6) ◽  
pp. 960-964 ◽  
Author(s):  
Hisaya Terada ◽  
Haruo Tsubouchi ◽  
Katsuhiko Yamamoto ◽  
Kazuo Hisada ◽  
Yoshio Sakabe

Abstract A liquid chromatographic method for the determination of ochratoxin A in coffee beans (green and roast), instant coffee, and coffee drink is described. The sample is subjected to extraction with methanol-1% aqueous sodium bicarbonate (1 + 1) and C18 cartridge cleanup. The extract is chromatographed on a Nucleosil 5C18 column with a mobile solvent of acetonitrile-water-0.2M phosphate buffer pH 7.5 (50 + 47 + 3) containing 3mM cetyltrimethylammonium bromide as an ionpair reagent. Ochratoxin A is detected with a fluoromcter (excitation 365 nm, emission 450 nm). The sensitivity was increased 20-fold by using ion-pair resolution. The detection limits corresponded to 2 μg/kg for coffee beans, 5 μg/kg for instant coffee, and 0.2 μg/kg for coffee drink. The recoveries from coffee products were generally better than 80.7% and the relative standard deviations were 3.43-5.93%. The peak coinciding with ochratoxin A can be confirmed by treatment using alcohol (methanol, ethanol, or n-propanol) and H2S04.


Sign in / Sign up

Export Citation Format

Share Document