scholarly journals Development and Validation of a Liquid Chromatographic Method for the Simultaneous Determination of Estradiol, Estriol, Estrone, and Progesterone in Pharmaceutical Preparations

2009 ◽  
Vol 92 (3) ◽  
pp. 846-854 ◽  
Author(s):  
Phyllis Wilson

Abstract Progesterone and estrogens are hormones produced in the human body that are essential for regulating many vital functions. The three major estrogens produced by women are estriol, estradiol, and estrone. Progesterone is a naturally occurring hormone in both men and women. Pharmaceuticals containing estrogens alone or estrogens in combination with progesterone are commonly used in therapy. Patients requiring unique combinations of the drugs rely on pharmacies to compound the ingredients. In order to assess the potency of drugs containing combinations of estrogens and progesterone, a method was developed to determine all four ingredients simultaneously. The liquid chromatographic method utilized a Bondapak C18 column with an isocratic mobile phase of acetonitrilewater (50 + 50, v/v) at a flow rate of 1.0 mL/min and temperature of 30C. Under these conditions, the order of elution was estriol, estradiol, and estrone, followed by progesterone. UV detection was at 205 nm to monitor elution of the estrogens, then switched to 270 nm to monitor progesterone. The method was applied to the analysis of pharmacy-compounded drugs containing combinations of the hormones. Validation studies demonstrated that the method is accurate and precise.

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Dimal A. Shah ◽  
Dixita J. Suthar ◽  
Sunil L. Baldania ◽  
Usman K. Chhalotiya ◽  
Kashyap K. Bhatt

An isocratic, reversed phase-liquid-chromatographic assay method was developed for the quantitative determination of ibuprofen and famotidine in combined-dosage form. A Brownlee C18, 5 μm column with mobile phase containing water : methanol : acetonitrile (30 : 60 : 10, v/v/v) was used. The flow rate was 1.0 mL/min, and effluents were monitored at 264 nm. The retention times of ibuprofen and famotidine were 4.9 min and 6.8 min, respectively. The linearity for ibuprofen and famotidine was in the range of 2–20 μg/mL and 0.1–10 μg/mL, respectively. The proposed method was validated with respect to linearity, accuracy, precision, specificity, and robustness. The method was successfully applied to the estimation of ibuprofen and famotidine in combined dosage form.


2019 ◽  
Vol 15 (6) ◽  
pp. 635-641
Author(s):  
Nadia M. Mostafa ◽  
Ghada M. Elsayed ◽  
Nagiba Y. Hassan ◽  
Dina A. El Mously

Background:The concept of green analytical chemistry prevails due to the growing environmental pollution.Objective:Our attempts are to develop simple and eco-friendly method which is non-harmful to the environment by producing minimal waste. In this context, a green liquid chromatographic method was applied for the simultaneous determination of chlorpheniramine maleate, pseudoephedrine hydrochloride and propyphenazone in their combined dosage form.Methods:Separation was carried out using X select HSS RP C18 analytical column (250 × 4.6 mm, 5μm) using methanol - 0.02 M phosphate buffer pH 3 - triethylamine (60:40: 0.1, by volume) as a mobile phase. The separated peaks were detected at 215 nm at a flow rate 1.0 mL/min.Results:Quantification was done over the concentration ranges of 1-25 µg/mL for chlorpheniramine maleate, 5-35 µg/mL for pseudoephedrine hydrochloride and 10-120 µg/mL for propyphenazone. The suggested method was validated with regard to linearity, accuracy and precision according to the International Conference on Harmonization guidelines with good results.Conclusion:It could be used as a safer alternative for routine analysis of the mentioned drugs in quality control laboratories.


1986 ◽  
Vol 69 (6) ◽  
pp. 1026-1030
Author(s):  
Bruce C Flann ◽  
Bruce A Lodge

Abstract The validation of a liquid chromatographic procedure suitable for the determination of calcitriol and alfacalcidol in their respective formulations labeled to contain at least 0.25 μ.g drug per unit is described. The capsule content is diluted and chromatographed in 15-20 min on silica columns (5 μm) with a mobile phase of hexane-tetrahydrofuranmethylene dichloride-isopropanol (72 + 12 + 12 + 4, v/v) with detection at 254 nm. The calibration curve is linear. Recoveries of “spikes” averaged 101% with a standard deviation of 2%. Precision was better than 1.5%.


1993 ◽  
Vol 76 (1) ◽  
pp. 92-94 ◽  
Author(s):  
Paolo Cabras ◽  
Marinella Melis ◽  
Lorenzo Spanedda

Abstract A liquid chromatographic method is described for the determination of cymiazole residues in honey. This acaricide is determined on a reversed-phase (C18) column, with a CH3CN-O.OOIN HCI-NaCI mixture (950 mL + 50 mL + 0.3 g/L) as the mobile phase, and UV detection at 265 nm. Cymiazole is extracted with n-hexane from aqueous alkalinized (pH 9) honey solutions. No further cleanup of the honey extract was required before chromatographic analysis. Recoveries on control samples fortified with 0.01,0.10, and 1.00 ppm cymiazole ranged from 92 to 102%. The limit of determination was 0.01 ppm.


Sign in / Sign up

Export Citation Format

Share Document