scholarly journals Prototropic and metallotropic migration of isolobal fragments on indol rings. Theoretical study and NBO analysis

2009 ◽  
Vol 5 (1) ◽  
pp. 614-625
Author(s):  
Saeed Jameh-Bozorghi ◽  
Zahra Javanshir ◽  
D. Nori Shargh

Molecular structures, energies, NBO analysis and sigmatropic behaviour of 1-Indenyl(dihydro)borane (1) and 1-Indenyl-threecarbonylcobalt(I) (2) were investigated using DFT and ab initio molecular orbital methods. In these compounds BH2 and Co(CO)3 fragments areisolobal. The Results of calculations using B3LYP, HF and MP2methods [Basis set 6-311+G**] showed that -BH2 and -Co(CO)3 had similar behaviour in sigmatropic shifts. Prototropic shifts in compounds 1 and 2 have similar mechanisms too. Results showed that metallotrotropic shift is faster than Prototrpic shift in compounds 1 and 2. The activation energies (Ea) of Prototropic shift in compounds 1 and 2 are 18.83 and 17.38 kcal.mol-1. These energies are higher than -BH2 shifts in compound 1 (10.11 kcal.mol-1) or migration of -Co(CO)3 fragment in compound 2 (12.39 kcal.mol-1). Lower amount of activation energy in borotropic shift and cobalt`s fragment shift show that rotation of boron and cobalt on the indol ring can happen in the ambient temperature. Calculation results revealed that migration of proton and Co(CO)3 was carried out via suprafacial[1,2]-sigmatropic mechanism while -BH2 shift took place via antrafacial [1,3]-rearangment. 

1982 ◽  
Vol 37 (2) ◽  
pp. 125-128
Author(s):  
Tae-Kyu Ha ◽  
M. T. Nguyen ◽  
L. Vanquickenborne

Abstract Results of ab initio SCF calculations on thioacrolein (CH2=CH-CH=S) and thioglyoxal (S=CH-CH=S) are reported. The geometries are optimized by the analytical gradient method using the double zeta (DZ) basis set. The trans conformers of these molecules are calculated to be more stable than the cis conformer by 2.06 and 4.31 kcal/mol, respectively.


2016 ◽  
Vol 169 ◽  
pp. 601-605 ◽  
Author(s):  
Fumihiko Aiga ◽  
Ryosuke Hiramatsu ◽  
Kunio Ishida

2000 ◽  
Vol 78 (11) ◽  
pp. 1496-1510 ◽  
Author(s):  
Yitzhak Apeloig ◽  
Stepan Sklenak

The reactions between silylene, H2Si, and the three-membered ring compounds, oxirane (9), thiirane (10), and selenirane (11), which provide possible routes to Si=X (X = O, S, Se) double bonds were studied by ab initio calculations at the MP2 and QCISD correlated levels of theory employing the polarized 6-31G** basis set. The calculations show that the three reactions are all highly exothermic, (–61.8, –45.2, –52.9 kcal/mol at MP2/6-31G**//MP2/6-31G** for X = O, S, Se, respectively). In the gas phase, at 0 K, these reactions are predicted to be also spontaneous (i.e., the calculated transition states are lower in energy than the reactants). At 298 K, entropy contributions result in small barriers on the ΔG surface for X = O, S (7.4 kcal/mol for both reactions at QCISD (full)/6-31G**), but for X = Se the reaction remains spontaneous. Thus, the calculations suggest that these reactions are viable routes for the preparation of compounds with Si=X (X = O, S, Se) double bonds. The first step in all the reactions is the barrier-less formation of an encounter-complex between the silylene and the X atom of the precursor. For X = O, S, these complexes are predicted to be sufficiently stable to be observed in a matrix. The reaction steps which follow depend on X; for X = O fragmentation of the silylene-XC2H4 complex proceeds in two steps via a biradical intermediate, while for X = S and X = Se the fragmentation occurs in a single step. The first ab initio calculations for H2Si=Se are reported.Key words: silylene, silanone, silanethione, silaneselone.


2008 ◽  
Vol 63 (3-4) ◽  
pp. 175-182 ◽  
Author(s):  
Adnan Sağlam ◽  
Fatih Ucun

The optimized molecular structures, vibrational frequencies and corresponding vibrational assignments of the two planar O-cis and O-trans rotomers of 2,4-, 2,5- and 2,6-difluorobenzaldehyde have been calculated using ab initio Hartree-Fock (HF) and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set level. The calculations were adapted to the CS symmetries of all the molecules. The O-trans rotomers with lower energy of all the compounds have been found as preferential rotomers in the ground state. The mean vibrational deviations between the vibrational frequency values of the two conformers of all the compounds have been shown to increase while the relative energies increase, and so it has been concluded that the higher the relative energy between the two conformers the bigger is the mean vibrational deviation.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Mustafa Karakaya ◽  
Fatih Ucun ◽  
Ahmet Tokatlı

The optimized molecular structures and vibrational frequencies and also gauge including atomic orbital (GIAO)1H and13C NMR shift values of benzoylcholine chloride [(2-benzoyloxyethyl) trimethyl ammonium chloride] have been calculated using density functional theory (B3LYP) method with 6-31++G(d) basis set. The comparison of the experimental and calculated infrared (IR), Raman, and nuclear magnetic resonance (NMR) spectra has indicated that the experimental spectra are formed from the superposition of the spectra of two lowest energy conformers of the compound. So, it was concluded that the compound simultaneously exists in two optimized conformers in the ground state. Also the natural bond orbital (NBO) analysis has supported the simultaneous exiting of two conformers in the ground state. The calculated optimized geometric parameters (bond lengths and bond angles) and vibrational frequencies for both the lowest energy conformers were seen to be in a well agreement with the corresponding experimental data.


2011 ◽  
Vol 89 (10) ◽  
pp. 1230-1235
Author(s):  
Xiao-Hong Li ◽  
Rui-Zhou Zhang ◽  
Xian-Zhou Zhang

Theoretical study of several N-nitrosodiphenylamine biological molecules has been performed using quantum computational ab initio RHF and density functional B3LYP and B3PW91 methods with 6–311G++(d,p) basis set. Geometries obtained from density functional theory (DFT) calculations were used to perform Natural bond orbital (NBO) analysis. The p characters of two nitrogen natural hybrid orbitals (NHOs) σN3−N2 increase with increasing σp values of the substituents on the benzene, which results in a lengthening of the N3–N2 bond. The p characters of oxygen NHO σO1−N2 and nitrogen NHO σO1−N2 bond orbitals decrease with increasing σp values of the substituents on the benzene, which results in a shortening of the N2=O1 bond. It is also noted that decreased occupancy of the localized σN3−N2 orbital in the idealized Lewis structure, or increased occupancy of [Formula: see text]of the non-Lewis orbital, and their subsequent impact on molecular stability and geometry (bond lengths) are also related to the resulting p character of the corresponding nitrogen NHO of σN3−N2 bond orbital.


2019 ◽  
Vol 35 (2) ◽  
pp. 792-797
Author(s):  
Joseph Lianbuanga ◽  
Zodinpuia Pachuau

The selected isomers of C8H13+ are calculated to predict its relative energies and their stability for each species at the levels of density functional theory (DFT) using 6-311G+dp basis set. We also attempted to predict the isomerisation or mechanistic pathways by locating the transition States through the interruption of diagonal matrix as confirmed by the imaginary Eigen value one. The isomers of the known and new isomers are revealed and analysed after optimisation. The geometrical analysis proposed that Iso- VII might be the most stable isomer which is also proved by heat of reactions analysis and the activation energy of all the inter conversions are compared in the energy profile diagram.


2010 ◽  
Vol 8 (3) ◽  
pp. 397-403 ◽  
Author(s):  
Hanggara Sudrajat ◽  
Ria Armunanto

Molecular structures were optimized for the calix[4]arene by ab initio method at the Hartree-Fock level of theory using LANL2DZ and 6-311G basis sets. Conformational equilibrium of four calix[4]arene conformers are reported. The results are compared with experiment, force field, and semiempirical molecular orbital calculations. General trends in relative stabilities of calix[4]arene decrease in following order: cone > partial-cone > 1,2-alternate > 1,3-alternate. The most stable conformer is the cone conformer that is stabilized by an array of four hydrogen bonds and these results agree with the reported experimental observations. All structures were analyzed using theoretical IR, UV-Vis, and 1H NMR spectra attributed to the conformational equilibrium at the Hartree-Fock level of theory using LANL2DZ basis set.     Keywords: ab initio calculation, calix[4]arene, conformations, cone


Sign in / Sign up

Export Citation Format

Share Document