scholarly journals Characterization of Alternaria brassicae causing black leaf spot disease of cabbage (Brassica oleracea var. capitata) in the southern part of Kazakhstan

2019 ◽  
Vol 18 (4) ◽  
pp. 3-13
Author(s):  
Nurdana Salybekova Nurtaevna ◽  
Esin Basim ◽  
Hüseyin Basim ◽  
Gulmira Turmetova Zhusupovna

Cabbage plants showing symptoms of leaf spot were detected from various fields in the Almaty region of Kazakhstan in the winter seasons of 2015 and 2016. The disease incidences of approximately 50% were recorded in various fields visited in the Almaty region. The pathogen was aseptically isolated from the symptomatic leaves and maintained in an in vitro culture media. Morphological characteristics and sporulation of the fungus was determined under both light and electron microscopy. The extracted genomic DNA of the fungi was subjected to Polymerase Chain Reaction (PCR) using ABCsens/ABCrev and ITS1/ITS4 primers amplifying ABC transporter (Atr1) gene and the internal transcribed spacer regions, respectively. The amplified products of PCR were sequenced, aligned, blasted and compared for similarity with other species in the NCBI GenBank. The cluster analysis result showed 99% homology with related fungi retrieved from the NCBI GenBank for the ITS region. The fungal isolate was pathogenic towards twenty-two-day-old plants, namely, Brassica oleracea, Lycopersicon esculentum, Solanum melongena, and was established as the causal agent of leaf spot on these plants. This is the first record implicating A. brassicae for black leaf spot disease of cabbage in Kazakhstan.

Plant Disease ◽  
2021 ◽  
Author(s):  
Yanxiang Qi ◽  
Yanping Fu ◽  
Jun Peng ◽  
Fanyun Zeng ◽  
Yanwei Wang ◽  
...  

Banana (Musa acuminate L.) is an important tropical fruit in China. During 2019-2020, a new leaf spot disease was observed on banana (M. acuminate L. AAA Cavendish, cv. Formosana) at two orchards of Chengmai county (19°48ʹ41.79″ N, 109°58ʹ44.95″ E), Hainan province, China. In total, the disease incidence was about 5% of banana trees (6 000 trees). The leaf spots occurred sporadically and were mostly confined to the leaf margin, and the percentage of the leaf area covered by lesions was less than 1%. Symptoms on the leaves were initially reddish brown spots that gradually expanded to ovoid-shaped lesions and eventually become necrotic, dry, and gray with a yellow halo. The conidia obtained from leaf lesions were brown, erect or curved, fusiform or elliptical, 3 to 4 septa with dimensions of 13.75 to 31.39 µm × 5.91 to 13.35 µm (avg. 22.39 × 8.83 µm). The cells of both ends were small and hyaline while the middle cells were larger and darker (Zhang et al. 2010). Morphological characteristics of the conidia matched the description of Curvularia geniculata (Tracy & Earle) Boedijn. To acquire the pathogen, tissue pieces (15 mm2) of symptomatic leaves were surface disinfected in 70% ethanol (10 s) and 0.8% NaClO (2 min), rinsed in sterile water three times, and transferred to potato dextrose agar (PDA) for three days at 28°C. Grayish green fungal colonies appeared, and then turned fluffy with grey and white aerial mycelium with age. Two representative isolates (CATAS-CG01 and CATAS-CG92) of single-spore cultures were selected for molecular identification. Genomic DNA was extracted from the two isolates, the internal transcribed spacer (ITS), large subunit ribosomal DNA (LSU rDNA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), translation elongation factor 1-alpha (TEF1-α) and RNA polymerase II second largest subunit (RPB2) were amplified and sequenced with universal primers ITS1/ITS4, LROR/LR5, GPD1/GPD2, EF1-983F/EF1-2218R and 5F2/7cR, respectively (Huang et al. 2017; Raza et al. 2019). The sequences were deposited in GenBank (MW186196, MW186197, OK091651, OK721009 and OK491081 for CATAS-CG01; MZ734453, MZ734465, OK091652, OK721100 and OK642748 for CATAS-CG92, respectively). For phylogenetic analysis, MEGA7.0 (Kumar et al. 2016) was used to construct a Maximum Likelihood (ML) tree with 1 000 bootstrap replicates, based on a concatenation alignment of five gene sequences of the two isolates in this study as well as sequences of other Curvularia species obtained from GenBank. The cluster analysis revealed that isolates CATAS-CG01 and CATAS-CG92 were C. geniculata. Pathogenicity assays were conducted on 7-leaf-old banana seedlings. Two leaves from potted plants were stab inoculated by puncturing into 1-mm using a sterilized needle and placing 10 μl conidial suspension (2×106 conidia/ml) on the surface of wounded leaves and equal number of leaves were inoculated with sterile distilled water serving as control (three replicates). Inoculated plants were grown in the greenhouse (12 h/12 h light/dark, 28°C, 90% relative humidity). Necrotic lesions on inoculated leaves appeared seven days after inoculation, whereas control leaves remained healthy. The fungus was recovered from inoculated leaves, and its taxonomy was confirmed morphologically and molecularly, fulfilling Koch’s postulates. C. geniculata has been reported to cause leaf spot on banana in Jamaica (Meredith, 1963). To our knowledge, this is the first report of C. geniculata on banana in China.


Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 138-138 ◽  
Author(s):  
B. Z. Fu ◽  
M. Yang ◽  
G. Y. Li ◽  
J. R. Wu ◽  
J. Z. Zhang ◽  
...  

Chinese bean tree, Catalpa fargesii f. duciouxii (Dode) Gilmour, is an ornamental arbor plant. Its roots, leaves, and flowers have long been used for medicinal purposes in China. During July 2010, severe outbreaks of leaf spot disease on this plant occurred in Kunming, Yunnan Province. The disease incidence was greater than 90%. The symptoms on leaves began as dark brown lesions surrounded by chlorotic halos, and later became larger, round or irregular spots with gray to off-white centers surrounded by dark brown margins. Leaf tissues (3 × 3 mm), cut from the margins of lesions, were surface disinfected in 0.1% HgCl2 solution for 3 min, rinsed three times in sterile water, plated on potato dextrose agar (PDA), and incubated at 28°C. The same fungus was consistently isolated from the diseased leaves. Colonies of white-to-dark gray mycelia formed on PDA, and were slightly brown on the underside of the colony. The hyphae were achromatic, branching, septate, and 4.59 (±1.38) μm in diameter on average. Perithecia were brown to black, globose in shape, and 275.9 to 379.3 × 245.3 to 344.8 μm. Asci that formed after 3 to 4 weeks in culture were eight-spored, clavate to cylindrical. The ascospores were fusiform, slightly curved, unicellular and hyaline, and 13.05 to 24.03 × 10.68 to 16.02 μm. PCR amplification was carried out by utilizing universal rDNA-ITS primer pair ITS4/ITS5 (2). Sequencing of the PCR products of DQ1 (GenBank Accession No. JN165746) revealed 99% similarity (100% coverage) with Colletotrichum gloeosporioides isolates (GenBank Accession No. FJ456938.1, No. EU326190.1, No. DQ682572.1, and No. AY423474.1). Phylogenetic analyses (MEGA 4.1) using the neighbor-joining (NJ) algorithm placed the isolate in a well-supported cluster (>90% bootstrap value based on 1,000 replicates) with other C. gloeosporioides isolates. The pathogen was identified as C. gloeosporioides (Penz.) Penz. & Sacc. (teleomorph Glomerella cingulata (Stoneman) Spauld & H. Schrenk) based on the morphological characteristics and rDNA-ITS sequence analysis (1). To confirm pathogenicity, Koch's postulates were performed on detached leaves of C. fargesii f. duciouxii, inoculated with a solution of 1.0 × 106 conidia per ml. Symptoms similar to the original ones started to appear after 10 days, while untreated leaves remained healthy. The inoculation assay used three leaves for untreated and six leaves for treated. The experiments were repeated once. C. gloeosporioides was consistently reisolated from the diseased tissue. C. gloeosporioides is distributed worldwide causing anthracnose on a wide variety of plants (3). To the best of our knowledge, this is the first report of C. gloeosporioides causing leaf spots on C. fargesii f. duciouxii in China. References: (1) B. C. Sutton. Page 1 in: Colletotrichum: Biology, Pathology and Control. CAB International. Wallingford, UK, 1992. (2) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990. (3) J. Yan et al. Plant Dis. 95:880, 2011.


2014 ◽  
Vol 13 (4) ◽  
pp. 232-245 ◽  
Author(s):  
Swati Deep ◽  
Pratibha Sharma ◽  
Niranjan Behera ◽  
Pallem Chowdappa

2011 ◽  
Vol 59 (5) ◽  
pp. 1667-1672 ◽  
Author(s):  
Tsung-Chun Lin ◽  
Mi-Chen Fan ◽  
Sheng-Yang Wang ◽  
Jenn-Wen Huang

Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 289-289 ◽  
Author(s):  
Y. Z. Zhu ◽  
W. J. Liao ◽  
D. X. Zou ◽  
Y. J. Wu ◽  
Y. Zhou

In May 2014, a severe leaf spot disease was observed on walnut tree (Juglans regia L.) in Hechi, Guangxi, China. Leaf spots were circular to semicircular in shape, water-soaked, later becoming grayish white in the center with a dark brown margin and bordered by a tan halo. Necrotic lesions were approximately 3 to 4 mm in diameter. Diseased leaves were collected from 10 trees in each of five commercial orchards. The diseased leaves were cut into 5 × 5 mm slices, dipped in 75% ethanol for 30 s, washed three times in sterilized water, sterilized with 0.1% (w/v) HgCl2 for 3 min, and then rinsed five times with sterile distilled water. These slices were placed on potato dextrose agar (PDA), followed by incubating at 28°C for about 3 to 4 days. Fungal isolates were obtained from these diseased tissues, transferred onto PDA plates, and incubated at 28°C. These isolates produced gray aerial mycelium and then became pinkish gray with age. Moreover, the reverse of the colony was pink. The growth rate was 8.21 to 8.41 mm per day (average = 8.29 ± 0.11, n = 3) at 28°C. The colonies produced pale orange conidial masses and were fusiform with acute ends, hyaline, sometimes guttulate, 4.02 to 5.25 × 13.71 to 15.72 μm (average = 4.56 ± 0.31 × 14.87 ± 1.14 μm, n = 25). The morphological characteristics and measurements of this fungal isolate matched the previous descriptions of Colletotrichum fioriniae (Marcelino & Gouli) R.G. Shivas & Y.P. Tan (2). Meanwhile, these characterizations were further confirmed by analysis of the partial sequence of five genes: the internal transcribed spacer (ITS) of the ribosomal DNA, beta-tubulin (β-tub) gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene, chitin synthase 3(CHS-1) gene, and actin (ACT) gene, with universal primers ITS4/ITS5, T1/βt2b, GDF1/GDR1, CHS1-79F/CHS1-354R, and ACT-512F/ACT-783R, respectively (1). BLAST of these DNA sequences using the nucleotide database of GenBank showed a high identify (ITS, 99%; β-tub, 99%; GAPDH, 99%; CHS-1, 99%; and ACT, 100%) with the previously deposited sequences of C. fioriniae (ITS, KF278459.1, NR111747.1; β-tub, AB744079.1, AB690809.1; GAPDH, KF944355.1, KF944354.1; CHS-1, JQ948987.1, JQ949005.1; and ACT, JQ949625.1, JQ949626.1). Koch's postulates were fulfilled by inoculating six healthy 1-year-old walnut trees in July 2014 with maximum and minimum temperatures of 33 and 26°C. The 6-mm mycelial plug, which was cut from the margin of a 5-day-old colony of the fungus on PDA, was placed onto each pin-wounded leaf, ensuring good contact between the mycelium and the wound. Non-colonized PDA plugs were placed onto pin-wounds as negative controls. Following inoculation, both inoculated and control plants were covered with plastic bags. Leaf spots, similar to those on naturally infected plants, were observed on the leaves inoculated with C. fioriniae within 5 days. No symptoms were observed on the negative control leaves. Finally, C. fioriniae was re-isolated from symptomatic leaves; in contrast, no fungus was isolated from the control, which confirmed Koch's postulates. To our knowledge, this is the first report of leaf disease on walnut caused by C. fioriniae. References: (1) L. Cai et al. Fungal Divers. 39:183, 2009. (2) R. G. Shivas and Y. P. Tan. Fungal Divers. 39:111, 2009.


Plant Disease ◽  
2021 ◽  
Author(s):  
Walftor Dumin ◽  
Mi-Jeong Park ◽  
You-Kyoung Han ◽  
Yeong-Seok Bae ◽  
Jong-Han Park ◽  
...  

Garlic (Allium sativum L. cv.namdo) is one of the most popular vegetables grown in Korea due to its high demand from the food industry. However, garlic is susceptible to a wide range of pest infestations and diseases that cause a significant decrease in garlic production, locally and globally (Schwartz and Mohan 2008). In early 2019, the occurrence of leaf blight disease was found spreading in garlic cultivation areas around Jeonnam (34.9671107, 126.4531825) province, Korea. Disease occurrence was estimated to affect 20% of the garlic plants and resulted in up to a 3-5% decrease in its total production. At the early stage of infection, disease symptoms were manifested as small, white-greyish spots with the occurrence of apical necrosis on garlic leaves. This necrosis was observed to enlarge, producing a water-soaked lesion before turning into a black-violet due to the formation of conidia. As the disease progressed, the infected leaves wilted, and the whole garlic plants eventually died. To identify the causal agent, symptomatic tissues (brown dried water-soak lesion) were excised, surface sterilized with 1% NaOCl and placed on the Potato Dextrose Agar (PDA) followed by incubation at 25°C in the dark for 5 days. Among ten fungal isolates obtained, four were selected for further analyses. On PDA, fungal colonies were initially greyish white in colour but gradually turned to yellowish-brown after 15 days due to the formation of yellow pigments. Conidia were muriform, brown in colour, oblong (almost round) with an average size of 18 – 22 × 16 – 20 μm (n = 50) and possessed 6 - 8 transverse septa. Fungal mycelia were branched, septate, and with smooth-walled hyphae. Morphological characteristics described above were consistent with the morphology of Stemphylium eturmiunum as reported by Simmons (Simmons, 2001). For molecular identification, molecular markers i.e. internal transcribed spacer (ITS) and calmodulin (cmdA) genes from the selected isolates were amplified and sequenced (White et al., 1990; Carbone and Kohn 1999). Alignment analysis shows that ITS and cmdA genes sequence is 100% identical among the four selected isolates. Therefore, representative isolate i.e. NIHHS 19-142 (KCTC56750) was selected for further analysis. BLASTN analysis showed that ITS (MW800165) and cmdA (LC601938) sequences of the representative isolates were 100% identical (523/523 bp and 410/410 bp) to the reference genes in Stemphylium eturmiunum isolated from Allium sativum in India (KU850545, KU850835) respectively (Woudenberg et al. 2017). Phylogenetic analysis of the concatenated sequence of ITS and cmdA genes confirmed NIHHS 19-142 isolates is Stemphylium eturmiunum. Pathogenicity test was performed using fungal isolate representative, NIHHS 19-142. Conidia suspension (1 × 106 conidia/µL) of the fungal isolate was inoculated on intact garlic leaves (two leaves from ten different individual plants were inoculated) and bulbs (ten bulbs were used) respectively. Inoculation on intact leaves was performed at NIHHS trial farm whereas inoculated bulbs were kept in the closed container to maintain humidity above 90% and incubated in the incubator chamber at 25°C. Result show that the formation of water-soaked symptoms at the inoculated site was observed at 14 dpi on intact leaves whereas 11 dpi on bulbs. As a control, conidia suspension was replaced with sterile water and the result shows no symptoms were observed on the control leaves and bulbs respectively. Re-identification of fungal colonies from symptomatic leaf and bulb was attempted. Result showed that the morphological characteristics and molecular marker sequences of the three colonies selected were identical to the original isolates thus fulfilled Koch’s postulates. Early identification of Stemphylium eturmiunum as a causal agent to leaf spot disease is crucial information to employ effective disease management strategies or agrochemical applications to control disease outbreaks in the field. Although Stemphylium eturmiunum has been reported to cause leaf spot of garlic disease in China, France and India (Woudenberg et al. 2017), to our knowledge, this is the first report of causing leaf spot disease on garlic in Korea.


2021 ◽  
Vol 21 (no 1) ◽  
Author(s):  
Aabid . ◽  
Sabiha Ashraf ◽  
Hilal A. Malik ◽  
Rakshanda Zargar ◽  
Shaheena A. Nagoo ◽  
...  

Septoria lycopersici responsible for Septoria leaf spot disease was observed on the leaves of tomato. Septoria lycopersici was isolated and completion of Koch’s postulates confirmed that the fungus was causal agent of the leaf spot disease. The fungus was cultured on potato dextrose agar medium. The fungus was very slow growing with 8-12 mm radial growth as recorded after 30 days of incubation. The fungus produced off white, irregular, hardened blackish mycelial growth oozing spore mass from pycnidia. Pycnidia were dark brown to black, globose to sub globose, ostiolated and thick walled. Pycnidiospores were filiform, straight with pointed to rounded ends.


Plant Disease ◽  
2021 ◽  
Author(s):  
Dongli Liu ◽  
Jing Li ◽  
Saisai Zhang ◽  
Xiangjing Wang ◽  
Wensheng Xiang ◽  
...  

Orychophragmus violaceus (L.) O. E. Schulz, also called February orchid or Chinese violet cress, belongs to the Brassicaceae family and is widely cultivated as a green manure and garden plant in China. During the prolonged rainy period in August 2020, leaf spot disease of O. violaceus was observed in the garden of Northeast Agricultural University, Harbin, Heilongjiang province. One week after the rainy days, the disease became more serious and the disease incidence ultimately reached approximately 80%. The disease symptoms began as small brown spots on the leaves, and gradually expanded to irregular or circular spots. As the disease progressed, spots became withered with grayish-white centers and surrounded by dark brown margins. Later on, the centers collapsed into holes. For severely affected plants, the spots coalesced into large necrotic areas and resulted in premature defoliation. No conidiophores or hyphae were present, and disease symptoms were not observed on other tissues of O. violaceus. To isolate the pathogen, ten leaves with typical symptoms were collected from different individual plants. Small square leaf pieces (5×5 mm) were excised from the junction of diseased and healthy tissues, disinfected in 75% ethanol solution for 1 min, rinsed in sterile distilled water, and then transferred to Petri dishes (9 cm in diameter) containing potato dextrose agar (PDA). After 3 days of incubation at 25 oC in darkness, newly grown-out mycelia were transferred onto fresh PDA and purified by single-spore isolation. Nine fungal isolates (NEAU-1 ~ NEAU-9) showing similar morphological characteristics were obtained and no other fungi were isolated. The isolation frequency from the leaves was almost 90%. On PDA plates, all colonies were grey-white with loose and cottony aerial hyphae, and then turned olive-green and eventually brown with grey-white margins. The fungus formed pale brown conidiophores with sparsely branched chains on potato carrot agar (PCA) plates after incubation at 25 oC in darkness for 7 days. Conidia were ellipsoidal or ovoid, light brown, and ranged from 18.4 to 59.1 × 9.2 to 22.3 µm in size, with zero to two longitudinal septa and one to five transverse septa and with a cylindrical light brown beak (n = 50). Based on the cultural and morphological characteristics, the fungus was tentatively identified as Alternaria tenuissima (Simmons 2007). Genomic DNA was extracted from the mycelia of five selected isolates (NEAU-1 ~ NEAU-5). The internal transcribed spacer region (ITS) was amplified and sequenced using primers ITS1/ITS4 (White et al., 1990). Blast analysis demonstrated that these five isolates had the same ITS sequence, and the ITS sequence of representative strain NEAU-5 (GenBank accession No. MW139354) showed 100% identity with the type strains of Alternaria alternata CBS916.96 and Alternaria tenuissima CBS918.96. Furthermore, the translation elongation factor 1-α gene (TEF), RNA polymerase II second largest subunit (RPB2), and glyceraldehyde 3-phosphate dehydrogenase (GPD) of representative strain NEAU-5 were amplified and sequenced using primers EF1-728F/EF1-986R (Carbone and Kohn 1999), RPB2-5F2/RPB2-5R (Sung et al., 2007), and Gpd1/Gpd2 (Berbee et al., 1999), respectively. The sequences of RPB2, GPD, and TEF of strain NEAU-5 were submitted to GenBank with accession numbers of MW401634, MW165223, and MW165221, respectively. Phylogenetic trees based on ITS, RPB2, GPD, and TEF were constructed with the neighbour-joining and maximum-likelihood algorithms using MEGA software version 7.0. The results demonstrated that strain NEAU-5 formed a robust clade with A. tenuissima CBS918.96 (supported by 99% and 96% bootstrap values) in the neighbour-joining and maximum-likelihood trees. As mentioned above, strain NEAU-5 produced seldomly branched conidial chains on PCA plates. The pattern is consistent with that of A. tenuissima (Kunze) Wiltshire, but distinct from that of A. alternata which could produce abundant secondary ramification (Simmons 2007). Thus, strain NEAU-5 was identified as A. tenuissima based on its morphology and phylogeny. Pathogenicity tests were carried out by inoculating five unwounded leaves with a conidial suspension of strain NEAU-5 (approximately 106 conidia/ml) on five different healthy plants cultivated in garden, and an equal number of leaves on the same plants inoculated with sterilized ddH2O served as negative controls. Inoculated and control leaves were covered with clear plastic bags for 3 days. After 6 days, small brown and irregular or circular spots were observed on all leaves inoculated with conidial suspension, while no such symptoms were observed in the control. The tests were repeated three times. Furthermore, the pathogenicity tests were also performed using 2-month-old potted plants in a growth chamber (28 oC, 90% relative humidity, 12 h/12 h light/dark) with two repetitions. Five healthy plants were inoculated by spraying 20 ml of a conidial suspension of strain NEAU-5 (approximately 106 conidia/ml) onto unwounded leaves. Five other healthy plants were inoculated with sterilized ddH2O as controls. After 7 days, similar symptoms were observed on leaves inoculated with strain NEAU-5, whereas no symptoms were observed in the control. The pathogen was reisolated from the inoculated leaves and identified as A. tenuissima by morphological and molecular methods. In all pathogenicity tests, A. tenuissima could successfully infect unwounded leaves of O. violaceus, indicating a direct interaction between leaves and A. tenuissima. It is known that high humidity and fairly high temperatures can favor the epidemics of Alternaria leaf spot (Yang et al., 2018), and this may explain why severe leaf spot disease of O. violaceus was observed after prolonged rain. Previously, it has been reported that Alternaria brassicicola and Alternaria japonica could cause leaf blight and spot disease on O. violaceus in Hebei and Jiangsu Provinces, China, respectively (Guo et al., 2019; Sein et al., 2020). Although these pathogens could lead to similar disease symptoms on the leaves of O. violaceus, it is easy to distinguish them by the morphological characteristics of conidiophores and ITS gene sequences. To our knowledge, this is the first report of A. tenuissima causing leaf spot disease of O. violaceus in China.


Sign in / Sign up

Export Citation Format

Share Document