Random Number Generation in Bilingual Balinese and German Students: Preliminary Findings from an Exploratory Cross-Cultural Study

2009 ◽  
Vol 109 (1) ◽  
pp. 61-75 ◽  
Author(s):  
Hans Strenge ◽  
Cokorda Bagus Jaya Lesmana ◽  
Luh Ketut Suryani

Verbal random number generation is a procedurally simple task to assess executive function and appears ideally suited for the use under diverse settings in cross-cultural research. The objective of this study was to examine ethnic group differences between young adults in Bali (Indonesia) and Kiel (Germany). 50 bilingual healthy students, 30 Balinese and 20 Germans, attempted to generate a random sequence of the digits 1 to 9. In Balinese participants, randomization was done in Balinese (native language L1) and Indonesian (first foreign language L2), in German subjects in the German (L1) and English (L2) languages. 10 of 30 Balinese (33%), but no Germans, were unable to inhibit habitual counting in more than half of the responses. The Balinese produced significantly more nonrandom responses than the Germans with higher rates of counting and significantly less occurrence of the digits 2 and 3 in L1 compared with L2. Repetition and cycling behavior did not differ between the four languages. The findings highlight the importance of taking into account culture-bound psychosocial factors for Balinese individuals when administering and interpreting a random number generation test.

2014 ◽  
Vol 1 ◽  
pp. 272-275 ◽  
Author(s):  
Vincent Canals ◽  
Antoni Morro ◽  
Josep L. Rosselló

2021 ◽  
Vol 485 ◽  
pp. 126736
Author(s):  
Muhammad Imran ◽  
Vito Sorianello ◽  
Francesco Fresi ◽  
Bushra Jalil ◽  
Marco Romagnoli ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 3330
Author(s):  
Pietro Nannipieri ◽  
Stefano Di Matteo ◽  
Luca Baldanzi ◽  
Luca Crocetti ◽  
Jacopo Belli ◽  
...  

Random numbers are widely employed in cryptography and security applications. If the generation process is weak, the whole chain of security can be compromised: these weaknesses could be exploited by an attacker to retrieve the information, breaking even the most robust implementation of a cipher. Due to their intrinsic close relationship with analogue parameters of the circuit, True Random Number Generators are usually tailored on specific silicon technology and are not easily scalable on programmable hardware, without affecting their entropy. On the other hand, programmable hardware and programmable System on Chip are gaining large adoption rate, also in security critical application, where high quality random number generation is mandatory. The work presented herein describes the design and the validation of a digital True Random Number Generator for cryptographically secure applications on Field Programmable Gate Array. After a preliminary study of literature and standards specifying requirements for random number generation, the design flow is illustrated, from specifications definition to the synthesis phase. Several solutions have been studied to assess their performances on a Field Programmable Gate Array device, with the aim to select the highest performance architecture. The proposed designs have been tested and validated, employing official test suites released by NIST standardization body, assessing the independence from the place and route and the randomness degree of the generated output. An architecture derived from the Fibonacci-Galois Ring Oscillator has been selected and synthesized on Intel Stratix IV, supporting throughput up to 400 Mbps. The achieved entropy in the best configuration is greater than 0.995.


2015 ◽  
Vol 137 ◽  
pp. 828-836 ◽  
Author(s):  
Che-Chi Shu ◽  
Vu Tran ◽  
Jeremy Binagia ◽  
Doraiswami Ramkrishna

2014 ◽  
Vol 104 (26) ◽  
pp. 261112 ◽  
Author(s):  
Z. L. Yuan ◽  
M. Lucamarini ◽  
J. F. Dynes ◽  
B. Fröhlich ◽  
A. Plews ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document