Choice Reaction Time of Elbow Flexion and Extension during Passive Elbow Motions

1988 ◽  
Vol 67 (3) ◽  
pp. 905-906
Author(s):  
Masaaki Fujita ◽  
Ryuichi Nakamura

The effect of passive elbow motions on electromyographic reaction times (EMG-RTs) of the biceps brachii for elbow flexion and the triceps for elbow extension was investigated in 8 normal subjects, using a choice-RT task, in which the subject was uncertain about the response direction to perform until the arrival of response signal after the passive motion started. Compared to the static condition, choice EMG-RTs shortened only when the direction of passive and response movements was the same. It seems that passive motions act as prior information on direction of movement in the choice-RT task.

1988 ◽  
Vol 66 (2) ◽  
pp. 515-520 ◽  
Author(s):  
Takashi Kinugasa ◽  
Keisuke Fukuda ◽  
Ryuichi Nakamura ◽  
Toru Hosokawa

Electromyographic reaction times (EMG-RTs) of the right biceps brachii muscle were examined for two movement patterns, elbow flexion and forearm supination, in 8 healthy male subjects under simple and complex RT conditions with varied preparatory intervals (PIs): 0, 200, 400, 600, and 800 msec. In the simple RT condition, the subject was informed of the movement patterns to be performed prior to beginning the trials. In the complex RT condition the subject had to choose one of the two movement patterns at the time of the presentation of a warning signal. The results indicated that: (1) compared with the simple RT condition a delay of about 100 msec. in over-all mean EMG-RT was observed at PI = 0 msec. in the complex RT condition; (2) the difference of over-all mean EMG-RT between the two RT conditions disappeared when PI = 400 msec.; and (3) the difference in EMG-RTs between flexion and supination in the complex RT condition became the same as that in the simple RT condition when PI = 700 msec. It is assumed that the preparatory set for response movements is organized in an order, resulting in the differentiation of RT.


1993 ◽  
Vol 70 (3) ◽  
pp. 947-960 ◽  
Author(s):  
J. C. Jamison ◽  
G. E. Caldwell

1. Twenty normal subjects performed a series of isometric elbow flexion (F) maximum voluntary contractions (MVC) while simultaneously maintaining one of seven targeted torque levels in the supination/pronation (S/P) degree of freedom (df). Experimental measures were torque in both df s and surface electromyograms (EMG) from brachioradialis (BRAD), triceps brachii (TB), biceps brachii (BB) short head (BBSH), and a medial and lateral site on biceps brachii long head (MED BB and LAT BB). Task effects were tested for significance using analysis of covariance models for the torque and EMG variables. Polynomial multiple regression models were developed for significant effects. The synergism among muscles was examined by statistically testing the EMG data for differing responses to the S/P torque changes across the five electrode sites. 2. The magnitude of the S/P target torque had a statistically significant effect on flexion MVC (F MVC) torque. Changes in S/P torque markedly influenced the F MVC torque magnitude, with as much as a 25% F torque decrement relative to an F MVC with an S/P torque target of 0. This suggests that the second df task affects some aspect of joint function that causes the CNS to reduce F torque capacity. 3. The S/P torque had a significant effect on EMG amplitude at all electrode sites other than TB. The EMG amplitude at the BB sites responded strongly to both F and S/P torque changes. The F+S tasks tended to facilitate BB EMG, whereas the F+P tasks tended to diminish it. The BRAD EMG, although primarily related to F torque amplitude, also was influenced by the S/P torque changes. The trends for BRAD EMG were opposite those for the BB in that BRAD EMG tended to be enhanced by the F+P tasks and reduced by the F+S tasks. 4. The synergistic pattern of stimulation (i.e., the relationship among the 5 EMG amplitude measures) was also significantly influenced by the S/P df task. Significant differences in the EMG behavior between BBSH and LAT BB were detected; however, no statistically significant differences were found between LAT BB and MED BB. The EMG behaviors at the BRAD and TB electrode sites were significantly different from those at the BB sites. 5. These inversely related responses from the BB and BRAD stress the importance of understanding the relationship between muscular activity and the function of muscles in more than one df. This finding further suggests that the synergistic relationships between muscles are dynamically related to task in all applicable dfs. It is suggested that this dynamic synergism is a natural consequence of the redundant musculoskeletal system.(ABSTRACT TRUNCATED AT 400 WORDS)


2020 ◽  
Vol 45 (1) ◽  
pp. 72-80
Author(s):  
Anna. P. Nippard ◽  
Evan. J. Lockyer ◽  
Duane. C. Button ◽  
Kevin. E. Power

The purpose of this study was to evaluate corticospinal excitability to the biceps and triceps brachii during forward (FWD) and backward (BWD) arm cycling. Corticospinal and spinal excitability were assessed using transcranial magnetic stimulation and transmastoid electrical stimulation to elicit motor evoked potentials (MEPs) and cervicomedullary evoked potentials (CMEPs), respectively. MEPs and CMEPs were recorded from the biceps and triceps brachii during FWD and BWD arm cycling at 2 positions, 6 and 12 o’clock. The 6 o’clock position corresponded to mid-elbow flexion and extension during FWD and BWD cycling, respectively, while 12 o’clock corresponded to mid-elbow extension and flexion during FWD and BWD cycling, respectively. During the flexion phase, MEP and CMEP amplitudes of the biceps brachii were higher during FWD cycling. However, during the extension phase, MEP and CMEP amplitudes were higher during BWD cycling. For the triceps brachii, MEP amplitudes were higher during FWD cycling regardless of phase. However, CMEP amplitudes were phase-dependent. During the flexion phase, CMEPs of the triceps brachii were higher during FWD cycling compared with BWD, but during the extension phase CMEPs were higher during BWD cycling compared with FWD. The data suggest that corticospinal and spinal excitability to the biceps brachii is phase- and direction-dependent. In the triceps brachii, spinal, but not corticospinal, excitability is phase-dependent when comparing FWD and BWD cycling. Novelty This is the first study to assess corticospinal excitability during FWD and BWD locomotor output. Corticospinal excitability during arm cycling depends on the direction, phase, and muscle being assessed.


1984 ◽  
Vol 59 (1) ◽  
pp. 191-194 ◽  
Author(s):  
Reiji Taniguchi ◽  
Ryuichi Nakamura ◽  
Tatsuya Kasai

The influence of starting positions of the arm on EMG-RTs of the biceps brachii muscle for elbow flexion and forearm supination was examined using 16 normal subjects. Two angles of the elbow joint, 45° and 110° flexion, and two positions of the forearm, 45° supination and 90° pronation, were used as the factorial combinations of all four. The EMG-RT for elbow flexion decreased in the order of 110° Pronation > 45° Pronation = 110° Supination > 45° Supination, and that for forearm supination decreased in the order of 45° Supination > 45° Pronation = 110° Supination > 110° Pronation. These results were kinesiologically interpreted that variations of EMG-RTs were based on the change in the number of synergic muscles participating in an intended movement and the muscle length of the prime mover at the start of the movement.


1982 ◽  
Vol 49 (1) ◽  
pp. 11-15
Author(s):  
Elizabeth Boyd

This study investigated the effects of six different types of olfactory stimuli on the electromyographic activity of the masseter, upper trapezius, and biceps brachii muscles of 18 normal subjects. The presence of the stimuli had a significant effect on the masseter (p < .011) and the upper trapezius (p < .001) muscles, but not on the biceps brachii muscle. The type of stimulus and the order of presentation of the stimuli had no significant effect on any of the three muscles. Muscle activity was increased whether or not the subject considered the stimulus pleasant or unpleasant. The limitations of this study, the implications for treatment using olfactory stimuli, and suggestions for further study are presented.


1982 ◽  
Vol 55 (2) ◽  
pp. 675-677 ◽  
Author(s):  
Tatsuya Kasai ◽  
Ryuichi Nakamura ◽  
Reiji Taniguchi

EMG-reaction times (EMG-RTs) of the biceps brachii for the elbow flexion and the supination were measured on 46 gymnastic male students under conditions with and without a warning signal. Analysis indicated that the difference in EMG-RTs between the movement patterns was observed under both conditions; the warning signal could reduce EMG-RTs in proportion to the length of EMG-RT without warning; and this trend was more remarkable on supination.


2019 ◽  
Author(s):  
Anna Nippard ◽  
Evan Lockyer ◽  
Duane Button ◽  
Kevin Power

The purpose of this study was to evaluate corticospinal excitability to the biceps and triceps brachii during forward (FWD) and backward (BWD) arm cycling. Corticospinal and spinal excitability were assessed using transcranial magnetic stimulation (TMS) and transmastoid electrical stimulation (TMES) to elicit motor evoked potentials (MEPs) and cervicomedullary evoked potentials (CMEPs), respectively. MEPs and CMEPs were recorded from the biceps and triceps brachii during FWD and BWD arm cycling at two positions, 6 and 12 o’clock. The 6 o’clock position corresponded to mid-elbow flexion and extension during FWD and BWD cycling, respectively, while 12 o’clock corresponded to mid-elbow extension and flexion during FWD and BWD cycling, respectively. During the flexion phase, MEP and CMEP amplitudes of the biceps brachii were higher during FWD than BWD cycling. However, during the extension phase, MEP and CMEP amplitudes were higher during BWD than FWD cycling. For the triceps brachii, MEP amplitudes were higher during FWD cycling compared to BWD regardless of phase. However, CMEP amplitudes were phase-dependent. During the flexion phase, CMEPs of the triceps brachii were higher during FWD cycling compared to BWD, but during the extension phase CMEPs were higher during BWD cycling compared to FWD. The data suggests that corticospinal and spinal excitability to the biceps brachii is phase- and direction-dependent. In the triceps brachii, spinal, but not corticospinal, excitability is phase-dependent when comparing FWD and BWD cycling.


2019 ◽  
Vol 122 (1) ◽  
pp. 413-423 ◽  
Author(s):  
Davis A. Forman ◽  
Daniel Abdel-Malek ◽  
Christopher M. F. Bunce ◽  
Michael W. R. Holmes

Forearm rotation (supination/pronation) alters corticospinal excitability to the biceps brachii, but it is unclear whether corticospinal excitability is influenced by joint angle, muscle length, or both. Thus the purpose of this study was to separately examine elbow joint angle and muscle length on corticospinal excitability. Corticospinal excitability to the biceps and triceps brachii was measured using motor evoked potentials (MEPs) elicited via transcranial magnetic stimulation. Spinal excitability was measured using cervicomedullary motor evoked potentials (CMEPs) elicited via transmastoid electrical stimulation. Elbow angles were manipulated with a fixed biceps brachii muscle length (and vice versa) across five unique postures: 1) forearm neutral, elbow flexion 90°; 2) forearm supinated, elbow flexion 90°; 3) forearm pronated, elbow flexion 90°; 4) forearm supinated, elbow flexion 78°; and 5) forearm pronated, elbow flexion 113°. A musculoskeletal model determined biceps brachii muscle length for postures 1–3, and elbow joint angles ( postures 4–5) were selected to maintain biceps length across forearm orientations. MEPs and CMEPs were elicited at rest and during an isometric contraction of 10% of maximal biceps muscle activity. At rest, MEP amplitudes to the biceps were largest during supination, which was independent of elbow joint angle. CMEP amplitudes were not different when the elbow was fixed at 90° but were largest in pronation when muscle length was controlled. During an isometric contraction, there were no significant differences across forearm postures for either MEP or CMEP amplitudes. These results highlight that elbow joint angle and biceps brachii muscle length can each independently influence spinal excitability. NEW & NOTEWORTHY Changes in upper limb posture can influence the responsiveness of the central nervous system to artificial stimulations. We established a novel approach integrating neurophysiology techniques with biomechanical modeling. Through this approach, the effects of elbow joint angle and biceps brachii muscle length on corticospinal and spinal excitability were assessed. We demonstrate that spinal excitability is uniquely influenced by joint angle and muscle length, and this highlights the importance of accounting for muscle length in neurophysiological studies.


2004 ◽  
Vol 29 (3) ◽  
pp. 257-262 ◽  
Author(s):  
H. E. J. VEEGER ◽  
M. KREULEN ◽  
M. J. C. SMEULDERS

We simulated pronator teres rerouting using a three-dimensional biomechanical model of the arm. Simulations comprised the evaluation of changes in muscle length and the moment arm of pronator teres with changes in forearm axial rotation and elbow flexion. The rerouting of Pronator Teres was simulated by defining a path for it through the interosseous membrane with re-attachment to its original insertion. However the effect of moving the insertion to new positions, 2 cm below and above, the original position was also assessed. The effect on total internal rotation and external rotation capacity was determined by calculating the potential moments for pronator teres, supinator, pronator quadratus, biceps brachii and brachioradialis. Pronator teres was found to be a weak internal rotator in extreme pronation, but a strong internal rotator in neutral rotation and in supination. After rerouting pronator teres was only a strong external rotator in full pronation and not at other forearm positions, where the effect of rerouting was comparable to a release procedure.


Sign in / Sign up

Export Citation Format

Share Document