pitch tilt
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
IWAN KURNIANTO WIBOWO ◽  
DANY PREISTIAN ◽  
FERNANDO ARDILLA

ABSTRAKPenelitian dengan topik robot hexapod telah banyak dikembangkan, namun sampai saat ini masih sedikit yang mengulas tentang kontrol keseimbangannya. Permasalahan yang kerap muncul adalah ketika robot berada dalam bidang miring, robot dapat terjatuh jika robot tidak dapat menyeimbangkan badan. Begitu pula dengan robot hexapod EILERO yang telah kami bangun. Untuk mengatasi permasalahan itu, selain pemodelan kinematik dan kinematika terbalik yang tepat, juga diperlukan suatu sistem keseimbangan yang baik. Dalam penelitian ini, kami menggunakan fuzzy logic untuk mengontrol keseimbangan robot EILERO dengan umpan balik data kemiringan dari sebuah sensor IMU. Setelah melalui beberapa pengujian yang komprehensif, didapatkan hasil bahwa robot dapat menyeimbangkan diri pada kondisi kemiringan papan pijakan antara -15° dan 15° pada orientasi kemiringan roll dan pitch. Robot mampu merespon dengan capaian steady state di bawah 3000 ms. Dengan demikian, robot EILERO semakin stabil dalam melintasi bidang yang tidak datar.Kata kunci: hexapod, EILERO, kinematika terbalik, fuzzy logic ABSTRACTResearch on the topic of the hexapod robot has been developed a lot, but until now there is little that has been discussed about balance control. The problem that often arises is that when the robot is on an inclined plane, the robot can fall if the robot cannot balance its body. Likewise with the EILERO hexapod robot that we have built. To solve this problem, besides proper kinematic modeling and inverse kinematic modeling, a good balance system is also needed. In this study, we used fuzzy logic to control the balance of the EILERO robot, with tilt data feedback from an IMU sensor. After going through several comprehensive tests, the results show that the robot can balance itself on the slope of the stepboards between -15 ° and 15 ° in the orientation of roll and pitch tilt. The robot is able to respond with steady state achievements below 3000 ms. Thus, the EILERO robot is increasingly stable in traversing uneven planes.Keywords: hexapod, EILERO, inverse kinematic, fuzzy logic


2018 ◽  
Vol 40 (8) ◽  
pp. 2454-2465 ◽  
Author(s):  
Zafer Öznalbant ◽  
Mehmet Ş. Kavsaoğlu

The purpose of this work is to present a study on the stability and control of an unmanned, fixed wing, vertical take-off and landing aerial vehicle. This airplane is driven by a fixed-pitch tilt-propeller system with the capability of vertical take-off and landing as well as conventional flight. The novelty of the vehicle is the use of a fixed-pitch propeller system instead of variable-pitch tilt-rotors. There are three flight modes: vertical, transitional and conventional flight modes. Each flight mode has different dynamic characteristics. Therefore, these modes each need dedicated flight control methods. In this paper, the equations of motion are generated by modelling the aerodynamic and propulsion forces and moments. After performing trim condition calculations, longitudinal stability characteristics are investigated for each flight mode. The control methods are described for vertical, transitional and conventional flight modes. Stability augmentation systems, which consist of proportional and proportional/integral controller, are applied. A number of flight tests, including vertical, transitional and conventional flights, have been successfully performed with a prototype aircraft.


2017 ◽  
Vol 84 ◽  
pp. 673-698 ◽  
Author(s):  
Yi-Ming Kao ◽  
Nan-Chyuan Tsai ◽  
Hsin-Lin Chiu
Keyword(s):  

SIMULATION ◽  
2016 ◽  
Vol 93 (7) ◽  
pp. 595-603 ◽  
Author(s):  
Florent Colombet ◽  
Zhou Fang ◽  
Andras Kemeny

The tilt coordination technique is used in driving simulation for reproducing a sustained linear horizontal acceleration by tilting the simulator cabin. If combined with the translation motion of the simulator, this technique increases the acceleration rendering capabilities of the whole system. To perform this technique correctly, the rotational motion must be slow to remain under the perception threshold and thus be unnoticed by the driver. However, the acceleration to render changes quickly. Between the slow rotational motion limited by the tilt threshold and the fast change of acceleration to render, the design of the coupling between motions of rotation and translation plays a critical role in the realism of a driving simulator. This study focuses on the acceptance by drivers of different configurations for tilt restitution in terms of maximum tilt angle, tilt rate, and tilt acceleration. Two experiments were conducted, focusing respectively on roll tilt for a 0.2 Hz slaloming task and on pitch tilt for an acceleration/deceleration task. The results show what thresholds have to be followed in terms of amplitude, rate, and acceleration. These results are far superior to the standard human perception thresholds found in the literature.


2011 ◽  
Vol 138 (1) ◽  
pp. 119-125 ◽  
Author(s):  
A. Bourrelly ◽  
J.-L. Vercher ◽  
L. Bringoux
Keyword(s):  

2004 ◽  
Vol 14 (5) ◽  
pp. 375-385 ◽  
Author(s):  
E.L. Groen ◽  
W. Bles

We examined to what extent body tilt may augment the perception of visually simulated linear self acceleration. Fourteen subjects judged visual motion profiles of fore-aft motion at four different frequencies between 0.04âĂŞ0.33 Hz, and at three different acceleration amplitudes (0.44, 0.88 and 1.76 m / s 2 ). Simultaneously, subjects were tilted backward and forward about their pitch axis. The amplitude of pitch tilt was systematically varied. Using a two-alternative-forced-choice paradigm, psychometric curves were calculated in order to determine: 1) the minimum tilt amplitude required to generate a linear self-motion percept in more than 50% of the cases, and 2) the maximum tilt amplitude at which rotation remains sub-threshold in more than 50% of the cases. The results showed that the simulation of linear self motion became more realistic with the application of whole body tilt, as long as the tilt rate remained under the detection threshold of about 3 deg/s. This value is in close agreement with the empirical rate limit commonly used in flight simulation. The minimum required motion cue was inversely proportional to stimulus frequency, and increased with the amplitude of the visual displacement (rather than acceleration). As a consequence, the range of useful tilt stimuli became more critical with increasing stimulus frequency. We conclude that this psychophysical approach reveals valid parameters for motion driving algorithms used in motion base simulators.


2004 ◽  
Vol 155 (3) ◽  
pp. 385-392 ◽  
Author(s):  
M. A. Gresty ◽  
A. M. Bronstein ◽  
L. Bringoux ◽  
K. Tamura ◽  
M. Faldon
Keyword(s):  

2003 ◽  
Vol 991 (1-2) ◽  
pp. 65-70 ◽  
Author(s):  
K. Yasuda ◽  
H. Fushiki ◽  
M. Maruyama ◽  
Y. Watanabe
Keyword(s):  

2000 ◽  
Vol 10 (6) ◽  
pp. 251-258 ◽  
Author(s):  
Lionel Bringoux ◽  
Ludovic Marin ◽  
Vincent Nougier ◽  
Pierre-Alain Barraud ◽  
Christian Raphel

The purpose of this study was to investigate how experts in motor skills requiring a fine postural control perceive their body orientation with few gravity based sensory cues. In Experiment 1, expert gymnasts and controls had to detect their body tilt when pitching at a velocity of 0.05 deg . s − 1 , in two conditions of body restriction (strapped and body cast altering the somatosensory cues). Contrary to the experts, the controls exhibited a larger body tilt when totally restrained in the body cast. In Experiment 2, subjects had to estimate their Subjective Postural Vertical (SPV) starting from different angles of pitch tilt. The controls exhibited significant errors of SPV judgement whereas the experts were very precise. These results suggest that 1) somatosensory cues are more informative than otolithic cues for the perception of body orientation, and 2) the efficiency of otolithic and/or interoceptive inputs can be improved through a specific training to compensate for the lack of somatosensory cues.


Sign in / Sign up

Export Citation Format

Share Document