Clinical Utility of Color–form Naming in Alzheimer's Disease: Preliminary Evidence

2004 ◽  
Vol 99 (3_suppl) ◽  
pp. 1201-1204 ◽  
Author(s):  
Niels Peter Nielsen ◽  
Elisabeth H. Wiig ◽  
Siegbert Warkentin ◽  
Lennart Minthon
2015 ◽  
Vol 45 (2) ◽  
pp. 527-542 ◽  
Author(s):  
D. Richard Lachno ◽  
Barbara A. Evert ◽  
Kaia Maloney ◽  
Brian A. Willis ◽  
Jayne A. Talbot ◽  
...  

Author(s):  
A. Nakamura

To facilitate disease-modifying clinical trials for Alzheimer’s Disease (AD), a blood-based amyloid-β (Aβ) biomarker, which can accurately detect an early pathological signature of AD at prodromal or preclinical stages, has been strongly desired, because it is simpler, less invasive and less costly compared to PET or lumbar puncture. Despite plasma Aβ biomarkers having been extensively investigated, most studies failed to demonstrate clinical utility (1, 2), and at the end of 2016, there was a rather pessimistic mood that this objective might be impossible to realize (3). However, since the latter half of 2017, the situation appears to have changed dramatically, in that several groups have reported potential clinical utility of plasma Aβ biomarkers using different methodologies (4-7). Especially, immunoprecipitation followed by mass spectrometry (IP-MS) assays have shown promising converging evidence. In 2014, we, the National Center for Geriatrics and Gerontology (NCGG) and Koichi Tanaka Mass Spectrometry Research Laboratory at Shimadzu Corporation (Shimadzu), reported that the plasma ratio of Aβ1-42 to a novel APP669-711 fragment (APP669–711/Aβ 1–42) as determined by IP-MS could discriminate high Aβ (Aβ+) individuals from low Aβ (Aβ-) individuals (classified using PiB-PET) with more than 90% accuracy (n=62) (8). In 2017, the Washington University group analyzed detailed kinetics of plasma Aβs, and reported that Aβ42/Aβ40 as measured by IP-MS could distinguish Aβ+ and Aβ- individuals with 88.7% areas under the curve value (n=41) (5). Then very recently, we, in collaboration with the Australian Imaging, Biomarker and Lifestyle Study of Aging (AIBL), have demonstrated that plasma biomarkers, APP669-711/Aβ1-42, Aβ1-40/Aβ1-42, and their composites (composite biomarker), as generated by improved IP-MS methodology performs very well in larger independent datasets: a discovery dataset (NCGG, n=121) and a validation dataset (AIBL, n=252 which includes n=111 PiB-PET and 141 with other ligands) both of which included individuals with normal cognition, MCI and AD. Particularly, the composite biomarker showed very high AUCs in both datasets (discovery 96.7%, n=121, and validation 94.1%, n=111) with accuracy c.a. 90% when using PiB-PET as standard of truth. The findings of the study were considered to be robust, reproducible and reliable because biomarker performance was validated in a blinded manner using independent data sets (Japan and Australia) and involved an established large-scale multicenter cohort (AIBL).


2020 ◽  
Author(s):  
Jongmin Lee ◽  
Hyemin Jang ◽  
Sung Hoon Kang ◽  
Jaeho Kim ◽  
Ji-Sun Kim ◽  
...  

Abstract The authors have withdrawn this preprint due to erroneous posting.


Author(s):  
D.R. Crapper McLachlan ◽  
W.J. Lukiw ◽  
T.P.A. Kruck

ABSTRACT:Application of molecular biological techniques and sensitive elemental analysis have produced new evidence implicating aluminum as an important factor in down regulation of neuronal protein metabolism. Aluminum in Alzheimer's disease may act by electrostatically crosslinking proteins, particularly the methionine containing histone Hl°, and DNA. The consequence of such crosslinking is reduced transcription of at least one neuron specific gene, the low molecular weight component of neurofilaments. In the superior temporal gyrus in Alzheimer's disease, down regulation of this gene occurs in approximately 86% of surviving neurons and, therefore, aluminum must be considered as having an active role in the pathogenesis. Epidemiological studies are reviewed that independently support the hypothesis that environmental aluminum is a significant risk factor. Preliminary evidence also suggests that a disorder in phosphorylation may be an important initiating factor.


Author(s):  
Konstantinos Chiotis ◽  
Alessandra Dodich ◽  
Marina Boccardi ◽  
Cristina Festari ◽  
Alexander Drzezga ◽  
...  

Abstract Purpose The research community has focused on defining reliable biomarkers for the early detection of the pathological hallmarks of Alzheimer’s disease (AD). In 2017, the Geneva AD Biomarker Roadmap initiative adapted the framework for the systematic validation of oncological biomarkers to AD, with the aim to accelerate their development and implementation in clinical practice. The aim of this work was to assess the validation status of tau PET ligands of the THK family and PBB3 as imaging biomarkers for AD, based on the Biomarker Roadmap methodology. Methods A panel of experts in AD biomarkers convened in November 2019 at a 2-day workshop in Geneva. The level of clinical validity of tau PET ligands of the THK family and PBB3 was assessed based on the 5-phase development framework before the meeting and discussed during the workshop. Results PET radioligands of the THK family discriminate well between healthy controls and patients with AD dementia (phase 2; partly achieved) and recent evidence suggests an accurate diagnostic accuracy at the mild cognitive impairment (MCI) stage of the disease (phase 3; partly achieved). The phases 2 and 3 were considered not achieved for PBB3 since no evidence exists about the ligand’s diagnostic accuracy. Preliminary evidence exists about the secondary aims of each phase for all ligands. Conclusion Much work remains for completing the aims of phases 2 and 3 and replicating the available evidence. However, it is unlikely that the validation process for these tracers will be completed, given the presence of off-target binding and the development of second-generation tracers with improved binding and pharmacokinetic properties.


Sign in / Sign up

Export Citation Format

Share Document