scholarly journals Relations between long-period ground motions and subsurface structures

2016 ◽  
Vol 66 (0) ◽  
pp. 1-14
Author(s):  
Daisuke MUTO ◽  
Akio KATSUMATA
1994 ◽  
Vol 84 (6) ◽  
pp. 1831-1841 ◽  
Author(s):  
Hiroaki Yamanaka ◽  
Masayuki Takemura ◽  
Hiroshi Ishida ◽  
Masanori Niwa

Abstract Applicability of long-period microtremors in inferring subsurface structure is examined using measurements of microtremors in the northwestern part of the Kanto Plain in Japan. Short-term continuous measurements of long-period microtremors at both sediment and basement sites were taken. A spectral peak at a period of 4 to 5 sec is stable with time, while peaks at periods less than 2 sec are time variant, suggesting a variation of microtremor sources. However, it was found that the spectral ratio between vertical and horizontal microtremors (ellipticity) at each site is stable with time. Good agreement was found between ellipticities of microtremors at the sediment site and those computed for Rayleigh waves in which the structure of the sediments beneath the site was taken into account. We also found that the ellipticities of Rayleigh waves in earthquake ground motions were consistent with those of the microtremors. These comparisons provide strong evidence that long-period microtremors in the area studied consist mainly of Rayleigh waves. The ellipticity of microtremors was investigated by observing microtremors at temporary observation sites in the Kanto Plain where the sediment thickness varied from 0 to 1 km. The subsurface structures were deduced by trial-and-error fitting of observed ellipticities with theoretical ellipticities that were calculated assuming Rayleigh waves. These results show that ellipticity of long-period microtremors is effective for deducing structure from microtremor data at a single site.


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
F. G. Golzar ◽  
R. Shabani ◽  
S. Tariverdilo ◽  
G. Rezazadeh

Using extended Hamiltonian variational principle, the governing equations for sloshing response of floating roofed storage tanks are derived. The response of the floating roofed storage tanks is evaluated for different types of ground motions, including near-source and long-period far-field records. Besides comparing the response of the roofed and unroofed tanks, the effect of different ground motions on the wave elevation, lateral forces, and overturning moments induced on the tank is investigated. It is concluded that the dimensionless sloshing heights for the roofed tanks are solely a function of their first natural period. Also it is shown that while long-period far-field ground motions control the free board height, near-source records give higher values for lateral forces and overturning moments induced on the tank. This means that same design spectrum could not be used to evaluate the free board and lateral forces in the seismic design of storage tanks. Finally, two cases are studied to reveal the stress patterns caused by different earthquakes.


2008 ◽  
Vol 73 (627) ◽  
pp. 733-740
Author(s):  
Yoshiaki KUMAGAI ◽  
Yasuhiro HAYASHI ◽  
Takeshi MORII ◽  
Yoshihiro ONISHI

2011 ◽  
Vol 31 (5-6) ◽  
pp. 817-829 ◽  
Author(s):  
José A. Abell ◽  
Juan Carlos de la Llera ◽  
Charles W. Wicks
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document