scholarly journals The Stress-Strain Relation in the Low-Cycle Fatigue of Metallic Materials under Rotating-Beam Bending

1972 ◽  
Vol 21 (227) ◽  
pp. 739-745
Author(s):  
Takao NAKAGAWA
2021 ◽  
Author(s):  
Guang-Zhao Han ◽  
lixun Cai ◽  
Chen Bao ◽  
Bo Liang ◽  
Yang Lv ◽  
...  

Abstract Although there are methods for testing the stress–strain relation and strength, which are the most fundamental and important properties of metallic materials, their application to small size specimens is limited. In this study, a new dimensionless elastoplastic load–displacement (EPLD-Ring) model for compressed metal rings with isotropy and constitutive power law is proposed to describe the relation between the geometric dimensions, Hollomon law parameters, load, and displacement based on energy density equivalence. Furthermore, a novel test method for the rings is developed to obtain the elastic modulus, stress–strain relation, yield strength, and tensile strength. The universality and accuracy of the model are verified within a wide range of imaginary materials via finite element analysis (FEA), and the results show that the stress–strain relations obtained with the model are more consistent with those inputted in the FEA software. Additionally, for seven metallic materials, a series of ring compression tests with various dimensions were performed. It was found that the stress–strain relations and mechanical properties predicted by the model are in agreement with the normal tensile test results. It is believed that the new method is reliable and effective for testing the mechanical properties of small size materials and tube components.


Author(s):  
Seiichiro Tsutsumi ◽  
Kouji Murakami ◽  
Koji Gotoh ◽  
Masahiro Toyosada

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Guangzhao Han ◽  
Lixun Cai ◽  
Chen Bao ◽  
Bo Liang ◽  
Yang Lyu ◽  
...  

AbstractAlthough there are methods for testing the stress-strain relation and strength, which are the most fundamental and important properties of metallic materials, their application to small-volume materials and tube components is limited. In this study, based on energy density equivalence, a new dimensionless elastoplastic load-displacement model for compressed metal rings with isotropy and constitutive power law is proposed to describe the relations among the geometric dimensions, Hollomon law parameters, load, and displacement. Furthermore, a novel test method was developed to determine the elastic modulus, stress-strain relation, yield and tensile strength via ring compression test. The universality and accuracy of the method were verified within a wide range of imaginary materials using finite element analysis (FEA), and the results show that the stress-strain curves obtained by this method are consistent with those inputted in the FEA program. Additionally, a series of ring compression tests were performed for seven metallic materials. It was found that the stress-strain curves and mechanical properties predicted by the method agreed with the uniaxial tensile results. With its low material consumption, the ring compression test has the potential to be as an alternative to traditional tensile test when direct tension method is limited.


2011 ◽  
Vol 86 (6-8) ◽  
pp. 1462-1465 ◽  
Author(s):  
E. Briani ◽  
C. Gianini ◽  
F. Lucca ◽  
A. Marin ◽  
J. Fellinger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document