scholarly journals Static Loading Tests of Glued Laminated Timber Joints with Drift-Pins. The Effect of MOE on Anisotropy of Mechanical Property.

2001 ◽  
Vol 50 (7) ◽  
pp. 745-750
Author(s):  
Masaki HARADA ◽  
Tomoyuki HAYASHI ◽  
Masahiko KARUBE ◽  
Akimitsu IIDA ◽  
Kohei KOMATSU
2019 ◽  
Vol 25 (60) ◽  
pp. 655-659
Author(s):  
Shuzo HIROISHI ◽  
Akira OKADA ◽  
Naoya MIYASATO ◽  
Noburu NAKAMURA ◽  
Kenichi MAMURO ◽  
...  

2017 ◽  
Vol 23 (55) ◽  
pp. 827-831
Author(s):  
Keigo YAMASHITA ◽  
Tadashi ISHIHARA ◽  
Hirofumi KAMBE ◽  
Kento SUZUKI ◽  
Masayuki NAGANO

2016 ◽  
Vol 53 (4) ◽  
pp. 696-707 ◽  
Author(s):  
Hai-lei Kou ◽  
Jian Chu ◽  
Wei Guo ◽  
Ming-yi Zhang

A large-scale field testing program for the study of residual forces in pre-stressed high-strength concrete (PHC) pipe piles is presented in this paper. Five open-ended PHC pipe piles with 13 or 18 m in embedded length were installed and used for static loading tests at a building site in Hangzhou, China. All the piles were instrumented with fiber Bragg grating (FBG) strain gauges. The residual forces in these piles were recorded during and after installation. The measured load transfer data along a pile during the static loading tests are reported. The effect of the residual force on the interpretation of the load transfer behavior is discussed. The field data show that residual force along the installed pile increases approximately exponentially to the neutral plane and then reduces towards the toe. The residual force decreases with time to a stable value after pile jacking due to the secondary interaction between the pile and the disturbed soil around the pile and other factors. The large residual forces along the PHC pipe piles significantly affect the evaluation of the pile load distributions, and thus the shaft and toe resistances. The conventional bearing capacity theory tends to overestimate the shaft resistance at positions above the neutral plane and underestimate the shaft resistance at positions below the neutral plane, and the toe resistance for an open-ended PHC pipe piles founded in stratified soils.


2013 ◽  
Vol 78 (687) ◽  
pp. 1007-1016 ◽  
Author(s):  
Masayoshi NAKAI ◽  
Kazuaki TSUDA ◽  
Shinji MASE ◽  
Hiroyuki NARIHARA ◽  
Takashi OKAYASU ◽  
...  

2014 ◽  
Vol 590 ◽  
pp. 331-335 ◽  
Author(s):  
Marcela Karmazínová ◽  
Michal Štrba

The paper deals with the problems of the actual behaviour, failure mechanism and load-carrying capacity of the special bolt connection developed and intended for the assembly joints of the truss main girders chords of perspective railway steel temporary bridges. Within the framework of this problem solution, several types of structural details of assembly joints have been considered as the conceptual structural design. Based on the preliminary evaluation of advantages or disadvantages of these ones, in principle two basic structural configurations – so-called “tooth” and “splice plate” connections have been selected for the subsequent detailed investigation. This investigation is mainly based on the experimental verification of the actual behaviour, strain and failure mechanism and corresponding strength of the connection, and on its numerical modelling using FEM. This paper is focused only on the static loading tests results of the splice plate connections and their evaluation, which have already been finished. Simultaneously with the static tests, the fatigue loading tests are being realized, too, but they have not been finished so far, as well as the FEM numerical modelling.


Sign in / Sign up

Export Citation Format

Share Document