scholarly journals Decentralized design of interconnected H∞ feedback control systems with quantized signals

2013 ◽  
Vol 23 (2) ◽  
pp. 317-325 ◽  
Author(s):  
Guisheng Zhai ◽  
Ning Chen ◽  
Weihua Gui

In this paper, we consider the design of interconnected H∞ feedback control systems with quantized signals. We assume that a decentralized dynamic output feedback has been designed for an interconnected continuous-time LTI system so that the closed-loop system is stable and a desired H∞ disturbance attenuation level is achieved, and that the subsystem measurement outputs are quantized before they are passed to the local controllers. We propose a local-output-dependent strategy for updating the parameters of the quantizers, so that the overall closed-loop system is asymptotically stable and achieves the same H∞ disturbance attenuation level. Both the pre-designed controllers and the parameters of the quantizers are constructed in a decentralized manner, depending on local measurement outputs.

1992 ◽  
Vol 29 (1) ◽  
pp. 16-23 ◽  
Author(s):  
Yiu-Kwong Wong

Application of a spreadsheet program to control system design The Symphony spreadsheet program is applied to calculate the frequency response of feedback control systems. A design template which contains the necessary formulae was constructed so that very little knowledge of the program is required to obtain impressive results. The template becomes a powerful tool by providing a fast and efficient means of designing a stable closed-loop system as well as predicting its performance.


2019 ◽  
Vol 37 (2) ◽  
pp. 395-417 ◽  
Author(s):  
Francesco Ferrante ◽  
Frédéric Gouaisbaut ◽  
Sophie Tarbouriech

Abstract Stability and stabilization for linear state feedback control systems in the presence of sensor quantization are studied. As the closed-loop system is described by a discontinuous right-hand side differential equation, Krasovskii solutions (to the closed-loop system) are considered. Sufficient conditions in the form of matrix inequalities are proposed to characterize uniform global asymptotic stability of a compact set containing the origin. Such conditions are shown to be always feasible whenever the quantization-free closed-loop system is asymptotically stable. Building on the obtained conditions, computationally affordable algorithms for the solution to the considered problems are illustrated. The effectiveness of the proposed methodology is shown in three examples.


2003 ◽  
Vol 2003 (28) ◽  
pp. 1807-1820 ◽  
Author(s):  
De-Xing Feng ◽  
Gen-Qi Xu ◽  
Siu-Pang Yung

A Timoshenko beam equation with boundary feedback control is considered. By an abstract result on the Riesz basis generation for the discrete operators in the Hilbert spaces, we show that the closed-loop system is a Riesz system, that is, the sequence of generalized eigenvectors of the closed-loop system forms a Riesz basis in the state Hilbert space.


1967 ◽  
Vol 89 (2) ◽  
pp. 379-383 ◽  
Author(s):  
Donald M. Wiberg

The optimum feedback control of controllable linear distributed stationary systems is discussed. A linear closed-loop system is assured by restricting the criterion to be the integral of quadratics in the state and control. Feedback is obtained by expansion of the linear closed-loop equation in terms of uncoupled modes. By incorporating symbolic functions into the formulation, one can treat boundary condition control and point observable systems that are null-delta controllable.


1989 ◽  
Vol 111 (2) ◽  
pp. 339-342
Author(s):  
R. Shoureshi

Closed-loop control systems, especially linear quadratic regulators (LQR), require feedbacks of all states. This requirement may not be feasible for those systems which have limitations due to geometry, power, required sensors, size, and cost. To overcome such requirements a passive method for implementation of state feedback control systems is presented.


Sign in / Sign up

Export Citation Format

Share Document