scholarly journals Simulation of a Homomorphic Encryption System

2020 ◽  
Vol 5 (1) ◽  
pp. 479-484
Author(s):  
Hanife Çağıl Bozduman ◽  
Erkan Afacan

AbstractCryptology is defined as the science of making communication incomprehensible to third parties who have no right to read and understand the data or messages. Cryptology consists of two parts, namely, cryptography and cryptanalysis. Cryptography analyzes methods of encrypting messages, and cryptanalysis analyzes methods of decrypting encrypted messages. Encryption is the process of translating plaintext data into something that appears to be random and meaningless. Decryption is the process of converting this random text into plaintext. Cloud computing is the legal transfer of computing services over the Internet. Cloud services let individuals and businesses to use software and hardware resources at remote locations. Widespread use of cloud computing raises the question of whether it is possible to delegate the processing of data without giving access to it. However, homomorphic encryption allows performing computations on encrypted data without decryption. In homomorphic encryption, only the encrypted version of the data is given to the untrusted computer to process. The computer will perform the computation on this encrypted data, without knowing anything on its real value. Finally, it will send back the result, and whoever has the proper deciphering key can decrypt the cryptogram correctly. The decrypted result will be equal to the intended computed value. In this paper, homomorphic encryption and their types are reviewed. Also, a simulation of somewhat homomorphic encryption is examined.

2021 ◽  
Vol 27 (2) ◽  
Author(s):  
H. Hamza ◽  
A.F.D Kana ◽  
M.Y. Tanko ◽  
S. Aliyu

Cloud computing is a model that aims to deliver a reliable, customizable and scalable computing environment for end-users. Cloud computing is one of the most widely used technologies embraced by sectors and academia, offering a versatile and effective way to store and retrieve documents. The performance and efficiency of cloud computing services always depend upon the performance of the execution of user tasks submitted to the cloud system. Scheduling of user tasks plays a significant role in improving the performance of cloud services. Accordingly, many dependent task scheduling algorithms have been proposed to improve the performance of cloud services and resource utilization; however, most of the techniques for determining which task should be scheduled next are inefficient. This research provided an enhanced algorithm for scheduling dependent tasks in cloud that aims at improving the overall performance of the system. The Dependent tasks were represented as a directed acyclic graph (DAG) and the number of dependent tasks and their total running time were used as a heuristic for determining which path should be explored first. Best first search approach based on the defined heuristic was used to traverse the graph to determine which task should be scheduled next. The results of the simulation using WorkflowSim toolkit showed an average improvement of 18% and 19% on waiting time and turnaround time were achieved respectively.


Author(s):  
Abdulelah Alwabel ◽  
Robert John Walters ◽  
Gary B. Wills

Cloud computing is a new paradigm that promises to move IT a step further towards utility computing, in which computing services are delivered as a utility service. Traditionally, Cloud employs dedicated resources located in one or more data centres in order to provide services to clients. Desktop Cloud computing is a new type of Cloud computing that aims at providing Cloud capabilities at low or no cost. Desktop Clouds harness non dedicated and idle resources in order to provide Cloud services. However, the nature of such resources can be problematic because they are prone to failure at any time without prior notice. This research focuses on the resource allocation mechanism in Desktop Clouds.The contributions of this chapter are threefold. Firstly, it defines and explains Desktop Clouds by comparing them with both Traditional Clouds and Desktop Grids. Secondly, the paper discusses various research issues in Desktop Clouds. Thirdly, it proposes a resource allocation model that is able to handle node failures.


Author(s):  
Ajai K. Daniel

The cloud-based computing paradigm helps organizations grow exponentially through means of employing an efficient resource management under the budgetary constraints. As an emerging field, cloud computing has a concept of amalgamation of database techniques, programming, network, and internet. The revolutionary advantages over conventional data computing, storage, and retrieval infrastructures result in an increase in the number of organizational services. Cloud services are feasible in all aspects such as cost, operation, infrastructure (software and hardware) and processing. The efficient resource management with cloud computing has great importance of higher scalability, significant energy saving, and cost reduction. Trustworthiness of the provider significantly influences the possible cloud user in his selection of cloud services. This chapter proposes a cloud service selection model (CSSM) for analyzing any cloud service in detail with multidimensional perspectives.


Author(s):  
Yulin Yao

Cloud Computing has offered many services to organizations and individuals. The emerging types of services such as analytics, mobile services and emerging software as a service have been offered but there is a lack of analysis on the current status. Core technologies for emerging Cloud services have been identified and presented. This brief opinion paper provides an overview of the current emerging Cloud services and explains the benefits for several disciplines. Four areas have been identified that may bring in more positive impacts for the future direction.


Author(s):  
Ahmed El-Yahyaoui ◽  
Mohamed Daifr Ech-Cherif El Kettani

Fully homomorphic encryption schemes (FHE) are a type of encryption algorithm dedicated to data security in cloud computing. It allows for performing computations over ciphertext. In addition to this characteristic, a verifiable FHE scheme has the capacity to allow an end user to verify the correctness of the computations done by a cloud server on his encrypted data. Since FHE schemes are known to be greedy in term of processing consumption and slow in terms of runtime execution, it is very useful to look for improvement techniques and tools to improve FHE performance. Parallelizing computations is among the best tools one can use for FHE improvement. Batching is a kind of parallelization of computations when applied to an FHE scheme, it gives it the capacity of encrypting and homomorphically processing a vector of plaintexts as a single ciphertext. This is used in the context of cloud computing to perform a known function on several ciphertexts for multiple clients at the same time. The advantage here is in optimizing resources on the cloud side and improving the quality of services provided by the cloud computing. In this article, the authors will present a detailed survey of different FHE improvement techniques in the literature and apply the batching technique to a promising verifiable FHE (VFHE) recently presented by the authors at the WINCOM17 conference.


2013 ◽  
Vol 660 ◽  
pp. 196-201 ◽  
Author(s):  
Muhammad Irfan ◽  
Zhu Hong ◽  
Nueraimaiti Aimaier ◽  
Zhu Guo Li

Cloud Computing is not a revolution; it’s an evolution of computer science and technology emerging by leaps and bounds, in order to merge all computer science tools and technologies. Cloud Computing technology is hottest to do research and explore new horizons of next generations of Computer Science. There are number of cloud services providers (Amazon EC2), Rackspace Cloud, Terremark and Google Compute Engine) but still enterprises and common users have a number of concerns over cloud service providers. Still there is lot of weakness, challenges and issues are barrier for cloud service providers in order to provide cloud services according to SLA (Service Level agreement). Especially, service provisioning according to SLAs is core objective of each cloud service provider with maximum performance as per SLA. We have identified those challenges issues, as well as proposed new methodology as “SLA (Service Level Agreement) Driven Orchestration Based New Methodology for Cloud Computing Services”. Currently, cloud service providers are using “orchestrations” fully or partially to automate service provisioning but we are trying to integrate and drive orchestration flows from SLAs. It would be new approach to provision cloud service and deliver cloud service as per SLA, satisfying QoS standards.


2020 ◽  
Vol 26 (1) ◽  
pp. 78-83
Author(s):  
Demet Cidem Dogan ◽  
Huseyin Altindis

With introduction of smart things into our lives, cloud computing is used in many different areas and changes the communication method. However, cloud computing should guarantee the complete security assurance in terms of privacy protection, confidentiality, and integrity. In this paper, a Homomorphic Encryption Scheme based on Elliptic Curve Cryptography (HES-ECC) is proposed for secure data transfer and storage. The scheme stores the data in the cloud after encrypting them. While calculations, such as addition or multiplication, are applied to encrypted data on cloud, these calculations are transmitted to the original data without any decryption process. Thus, the cloud server has only ability of accessing the encrypted data for performing the required computations and for fulfilling requested actions by the user. Hence, storage and transmission security of data are ensured. The proposed public key HES-ECC is designed using modified Weil-pairing for encryption and additional homomorphic property. HES-ECC also uses bilinear pairing for multiplicative homomorphic property. Security of encryption scheme and its homomorphic aspects are based on the hardness of Elliptic Curve Discrete Logarithm Problem (ECDLP), Weil Diffie-Hellman Problem (WDHP), and Bilinear Diffie-Helman Problem (BDHP).


2021 ◽  
Vol 11 (18) ◽  
pp. 8496
Author(s):  
Salah T. Alshammari ◽  
Khalid Alsubhi

Cloud computing is a widely used technology that has changed the way people and organizations store and access information. This technology is versatile, and extensive amounts of data can be stored in the cloud. Businesses can access various services over the cloud without having to install applications. However, cloud computing services are provided over a public domain, which means that both trusted and non-trusted users can access the services. Although there are a number of advantages to cloud computing services, especially for business owners, various challenges are posed in terms of the privacy and security of information and online services. A threat that is widely faced in the cloud environment is the on/off attack, in which entities exhibit proper behavior for a given time period to develop a positive reputation and gather trust, after which they exhibit deception. Another threat often faced by trust management services is a collusion attack, which is also known as collusive malicious feedback behavior. This is carried out when a group of people work together to make false recommendations with the intention of damaging the reputation of another party, which is referred to as a slandering attack, or to enhance their own reputation, which is referred to as a self-promoting attack. In this paper, a viable solution is provided with the given trust model for preventing these attacks. This method works by providing effective security to cloud services by identifying malicious and inappropriate behaviors through the application of trust algorithms that can identify on/off attacks and collusion attacks by applying different security criteria. Finally, the results show that the proposed trust model system can provide high security by decreasing security risk and improving the quality of decisions of data owners and cloud operators.


Author(s):  
Nur Widiyasono ◽  
Imam Riadi ◽  
Ahmad Luthfie

<p>Cloud services are offered by many cloud service providers, but in for large companies generally are build  by a private cloud computing. In cloud systems of abuse it can be done by internal users or due to misconfiguration or may also refer to weaknesses in the system. This study evaluated the ADAM method (Advanced Data Acquisition Model) and tested the case schemes which are being carried out in the laboratory simulation of the process in order to obtain forensic evidence of digital data on private cloud computing services. Referring to the results of the investigation process by using ADAM Method, it can be verified that there are several parameters of the success investigation including the structure of files, files, time stamp, mac-address, IP address, username password, and the data from a server both from the desktop PC or smartphone, therefore the investigation by using ADAM can be succesed properly and correctly. Another contribution of this study was to identify the weaknesses of the service system that used owncloud in users list of the the same group can change another’s user’s passwod.</p>


TEM Journal ◽  
2020 ◽  
pp. 915-923 ◽  
Author(s):  
Ekkachat Baikloy ◽  
Prasong Praneetpolgrang ◽  
Nivet Jirawichitchai

The research objectives were: 1) to develop cyber resilient model, 2) to develop the cyber resilient capability maturity model and 3) to develop self-assessment model for cyber resilient capability of cloud computing services which are qualitative and applicative research. Referring to the cybersecurity concept from National Institute of Standards and Technology (NIST) from the in-depth interview, focusgroup discussion was developed with cybersecurity experts and data collection from cloud services providers. It was found that trend of cyber-attacks was violent with smarter method. The authors had synthesized the concept of cyber resilient capability maturity model for cloud computing services including developed application for cloud services providers to evaluate their organization in order to improve the better cybersecurity level in cloud computing services and the cyber resilient capability maturity model in the future.


Sign in / Sign up

Export Citation Format

Share Document