scholarly journals On 4-dimensional flows with wildly embedded invariant manifolds of a periodic orbit

2020 ◽  
Vol 5 (2) ◽  
pp. 261-266
Author(s):  
Olga V. Pochinka ◽  
Danila D. Shubin

AbstractIn the present paper we construct an example of 4-dimensional flows on 𝕊3 × 𝕊1 whose saddle periodic orbit has a wildly embedded 2-dimensional unstable manifold. We prove that such a property has every suspension under a non-trivial Pixton's diffeomorphism. Moreover we give a complete topological classification of these suspensions.

Author(s):  
A. E. Kolobyanina ◽  
E. V. Nozdrinova ◽  
O. V. Pochinka

In this paper the authors use modern methods and approaches to present a solution to the problem of the topological classification of circle’s rough transformations in canonical formulation. In the modern theory of dynamical systems such problems are understood as the complete topological classification: finding topological invariants, proving the completeness of the set of invariants found and constructing a standard representative from a given set of topological invariants. Namely, in the first theorem of this paper the type of periodic data of circle’s rough transformations is established. In the second theorem necessary and sufficient conditions of their conjugacy are proved. These conditions mean coincidence of periodic data and rotation numbers. In the third theorem the admissible set of parameters is implemented by a rough transformation of a circle. While proving the theorems, we assume that the results on the local topological classification of hyperbolic periodic points, as well as the results on the global representation of the ambient manifold as a union of invariant manifolds of periodic points, are known.


2020 ◽  
Vol 66 (2) ◽  
pp. 160-181
Author(s):  
V. Z. Grines ◽  
E. Ya. Gurevich ◽  
O. V. Pochinka

This review presents the results of recent years on solving of the Palis problem on finding necessary and sufficient conditions for the embedding of Morse-Smale cascades in topological flows. To date, the problem has been solved by Palis for Morse-Smale diffeomorphisms given on manifolds of dimension two. The result for the circle is a trivial exercise. In dimensions three and higher new effects arise related to the possibility of wild embeddings of closures of invariant manifolds of saddle periodic points that leads to additional obstacles for Morse-Smale diffeomorphisms to embed in topological flows. The progress achieved in solving of Paliss problem in dimension three is associated with the recently obtained complete topological classification of Morse-Smale diffeomorphisms on three-dimensional manifolds and the introduction of new invariants describing the embedding of separatrices of saddle periodic points in a supporting manifold. The transition to a higher dimension requires the latest results from the topology of manifolds. The necessary topological information, which plays key roles in the proofs, is also presented in the survey.


Author(s):  
Anna A. Bosova ◽  
Olga V. Pochinka

Periodic data of diffeomorphisms with regular dynamics on surfaces were studied using zeta functions in a series of already classical works by such authors as P. Blanchard, J. Franks, S. Narasimhan, S. Batterson and others. The description of periodic data for gradient-like diffeomorphisms of surfaces were given in the work of A. Bezdenezhnykh and V. Grines by means of the classification of periodic surface transformations obtained by J. Nielsen. V. Grines, O. Pochinka, S. Van Strien showed that the topological classification of arbitrary Morse-Smale diffeomorphisms on surfaces is based on the problem of calculating periodic data of diffeomorphisms with a single saddle periodic orbit. Namely, the construction of filtering for Morse-Smale diffeomorphisms makes it possible to reduce the problem of studying periodic surface diffeomorphism data to the problem of calculating periodic diffeomorphism data with a single saddle periodic orbit. T. Medvedev, E. Nozdrinova, O. Pochinka solved this problem in a general formulation, that is, the periods of source orbits are calculated from a known period of the sink and saddle orbits. However, these formulas do not allow to determine the feasibility of the obtained periodic data on the surface of this kind. In an exhaustive way, the realizability problem is solved only on a sphere. In this paper we establish a complete list of periodic data of diffeomorphisms of a two-dimensional torus with one saddle orbit, provided that at least one nodal point of the map is fixed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Clément Dutreix ◽  
Matthieu Bellec ◽  
Pierre Delplace ◽  
Fabrice Mortessagne

AbstractPhase singularities appear ubiquitously in wavefields, regardless of the wave equation. Such topological defects can lead to wavefront dislocations, as observed in a humongous number of classical wave experiments. Phase singularities of wave functions are also at the heart of the topological classification of the gapped phases of matter. Despite identical singular features, topological insulators and topological defects in waves remain two distinct fields. Realising 1D microwave insulators, we experimentally observe a wavefront dislocation – a 2D phase singularity – in the local density of states when the systems undergo a topological phase transition. We show theoretically that the change in the number of interference fringes at the transition reveals the topological index that characterises the band topology in the insulator.


2021 ◽  
Vol 103 (16) ◽  
Author(s):  
Inho Lee ◽  
S. I. Hyun ◽  
J. H. Shim

2000 ◽  
Vol 20 (2) ◽  
pp. 611-626 ◽  
Author(s):  
RICHARD SWANSON ◽  
HANS VOLKMER

Weak equivalence of primitive matrices is a known invariant arising naturally from the study of inverse limit spaces. Several new invariants for weak equivalence are described. It is proved that a positive dimension group isomorphism is a complete invariant for weak equivalence. For the transition matrices corresponding to periodic kneading sequences, the discriminant is proved to be an invariant when the characteristic polynomial is irreducible. The results have direct application to the topological classification of one-dimensional inverse limit spaces.


2021 ◽  
Vol 29 (6) ◽  
pp. 835-850
Author(s):  
Vladislav Kruglov ◽  
◽  
Olga Pochinka ◽  
◽  

Purpose. The purpose of this study is to consider the class of Morse – Smale flows on surfaces, to characterize its subclass consisting of flows with a finite number of moduli of stability, and to obtain a topological classification of such flows up to topological conjugacy, that is, to find an invariant that shows that there exists a homeomorphism that transfers the trajectories of one flow to the trajectories of another while preserving the direction of movement and the time of movement along the trajectories; for the obtained invariant, to construct a polynomial algorithm for recognizing its isomorphism and to construct the realisation of the invariant by a standard flow on the surface. Methods. Methods for finding moduli of topological conjugacy go back to the classical works of J. Palis, W. di Melo and use smooth flow lianerization in a neighborhood of equilibrium states and limit cycles. For the classification of flows, the traditional methods of dividing the phase surface into regions with the same behavior of trajectories are used, which are a modification of the methods of A. A. Andronov, E. A. Leontovich, and A. G. Mayer. Results. It is shown that a Morse – Smale flow on a surface has a finite number of moduli if and only if it does not have a trajectory going from one limit cycle to another. For a subclass of Morse – Smale flows with a finite number of moduli, a classification is done up to topological conjugacy by means of an equipped graph. Conclusion. The criterion for the finiteness of the number of moduli of Morse – Smale flows on surfaces is obtained. A topological invariant is constructed that describes the topological conjugacy class of a Morse – Smale flow on a surface with a finite number of modules, that is, without trajectories going from one limit cycle to another.


Sign in / Sign up

Export Citation Format

Share Document