scholarly journals Lifetime Distributions and their Approximation in Reliability of Serial/Parallel Networks

2020 ◽  
Vol 28 (2) ◽  
pp. 161-172
Author(s):  
Alexei Leahu ◽  
Veronica Andrievschi-Bagrin

AbstractIn this paper we present limit theorems for lifetime distributions connected with network’s reliability as distributions of random variables(r.v.) min(Y1, Y2,..., YM) and max(Y1, Y2,..., YM ), where Y1, Y2,..., are independent, identically distributed random variables (i.i.d.r.v.), M being Power Series Distributed (PSD) r.v. independent of them and, at the same time, Yk, k = 1, 2, ..., being a sum of non-negative, i.i.d.r.v. in a Pascal distributed random number.

1978 ◽  
Vol 15 (03) ◽  
pp. 639-644 ◽  
Author(s):  
Peter Hall

LetXn1≦Xn2≦ ··· ≦Xnndenote the order statistics from a sample ofnindependent, identically distributed random variables, and suppose that the variablesXnn, Xn,n–1, ···, when suitably normalized, have a non-trivial limiting joint distributionξ1,ξ2, ···, asn → ∞. It is well known that the limiting distribution must be one of just three types. We provide a canonical representation of the stochastic process {ξn,n≧ 1} in terms of exponential variables, and use this representation to obtain limit theorems forξnasn →∞.


1975 ◽  
Vol 12 (02) ◽  
pp. 289-297
Author(s):  
Andrew D. Barbour

LetX(t) be a continuous time Markov process on the integers such that, ifσis a time at whichXmakes a jump,X(σ)– X(σ–) is distributed independently ofX(σ–), and has finite meanμand variance. Letq(j) denote the residence time parameter for the statej.Iftndenotes the time of thenth jump andXn≡X(tb), it is easy to deduce limit theorems forfrom those for sums of independent identically distributed random variables. In this paper, it is shown how, forμ> 0 and for suitableq(·), these theorems can be translated into limit theorems forX(t), by using the continuous mapping theorem.


1983 ◽  
Vol 20 (01) ◽  
pp. 47-60 ◽  
Author(s):  
M. Berman ◽  
G. K. Eagleson

Silverman and Brown (1978) have derived Poisson limit theorems for certain sequences of symmetric statistics, based on a sample of independent identically distributed random variables. In this paper an incomplete version of these statistics is considered and a Poisson limit result shown to hold. The powers of some tests based on the incomplete statistic are investigated and the main results of the paper are used to simplify the derivations of the asymptotic distributions of some statistics previously published in the literature.


1999 ◽  
Vol 36 (04) ◽  
pp. 1074-1085 ◽  
Author(s):  
Alexander V. Gnedin

A random number of independent identically distributed random variables is inspected in strict succession. As a variable is inspected, it can either be selected or rejected and this decision becomes final at once. The selected sequence must increase. The problem is to maximize the expected length of the selected sequence. We demonstrate decision policies which approach optimality when the number of observations becomes in a sense large and show that the maximum expected length is close to an easily computable value.


2010 ◽  
Vol 51 ◽  
Author(s):  
Aurelija Kasparavičiūtė ◽  
Leonas Saulis

In this paper, we present the rate of convergence of normal approximation and the theorem on large deviations for a compound process Zt = \sumNt i=1 t aiXi, where Z0 = 0 and ai > 0, of weighted independent identically distributed random variables Xi, i = 1, 2, . . . with  mean EXi = µ and variance DXi = σ2 > 0. It is assumed that Nt is a non-negative integervalued random variable, which depends on t > 0 and is independent of Xi, i = 1, 2, . . . .


1997 ◽  
Vol 34 (2) ◽  
pp. 309-327 ◽  
Author(s):  
J. P. Dion ◽  
N. M. Yanev

This paper deals with a Bienaymé-Galton-Watson process having a random number of ancestors. Its asymptotic properties are studied when both the number of ancestors and the number of generations tend to infinity. This yields consistent and asymptotically normal estimators of the mean and the offspring distribution of the process. By exhibiting a connection with the BGW process with immigration, all results can be transported to the immigration case, under an appropriate sampling scheme. A key feature of independent interest is a new limit theorem for sums of a random number of random variables, which extends the Gnedenko and Fahim (1969) transfer theorem.


1975 ◽  
Vol 12 (2) ◽  
pp. 289-297 ◽  
Author(s):  
Andrew D. Barbour

Let X(t) be a continuous time Markov process on the integers such that, if σ is a time at which X makes a jump, X(σ)– X(σ–) is distributed independently of X(σ–), and has finite mean μ and variance. Let q(j) denote the residence time parameter for the state j. If tn denotes the time of the nth jump and Xn ≡ X(tb), it is easy to deduce limit theorems for from those for sums of independent identically distributed random variables. In this paper, it is shown how, for μ > 0 and for suitable q(·), these theorems can be translated into limit theorems for X(t), by using the continuous mapping theorem.


Sign in / Sign up

Export Citation Format

Share Document