scholarly journals Determination of State Variables in Textile Composite with Membrane During Complex Heat and Moisture Transport

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ryszard Korycki

AbstractThe cotton-based composite is equipped with a single/double semipermeable membrane made of polyurethane (PU) (100%), which blocks liquid transport to the surrounding environment. The complex problem analyzed involves the coupled transport of water vapor within the textile material, transport of liquid water in capillaries, as well as heat transport with vapor and liquid water. The problem can be described using the mass transport equation for water vapor, heat transport equation, and mass transport equation for liquid moisture, accompanied by the set of corresponding boundary and initial conditions. State variables are determined using a complex multistage solution procedure within the selected points for each layer. The distributions of state variables are determined for different configurations of membranes.

Author(s):  
L y Li ◽  
J A Purkiss ◽  
R T Tenchev

In this paper an engineering model for coupled heat and mass transfer in heated concrete is proposed. The model considers the heat transfer and mass transport of liquid water and gaseous mixture. The evaporation of liquid water is assumed to be related to the imbalance pressure between liquid water and water vapour controlled by the ideal gaseous mixture pressure and water saturated pressure. Thus, the content of liquid water is determined directly from its mass transport equation rather than through assumed sorption isotherms as in most existing models. Numerical results for temperature, pore pressure and contents of liquid water and gaseous mixture are presented. Some important features are highlighted through the discussion of results.


Soil Science ◽  
2011 ◽  
Vol 176 (8) ◽  
pp. 387-398 ◽  
Author(s):  
Sanjit K. Deb ◽  
Manoj K. Shukla ◽  
Parmodh Sharma ◽  
John G. Mexal

2009 ◽  
Author(s):  
Ludovic Dan Lemle ◽  
Tudor Bi^nzar ◽  
Flavius Pater ◽  
Theodore E. Simos ◽  
George Psihoyios ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Abdon Atangana ◽  
Adem Kilicman

The hydrodynamic dispersion equation was generalized using the concept of variational order derivative. The modified equation was numerically solved via the Crank-Nicholson scheme. The stability and convergence of the scheme in this case were presented. The numerical simulations showed that, the modified equation is more reliable in predicting the movement of pollution in the deformable aquifers, than the constant fractional and integer derivatives.


Volume 1 ◽  
2004 ◽  
Author(s):  
Marcelo J. S. de Lemos

This work presents derivations of macroscopic heat and mass transport equations for turbulent flow in permeable structures. Two driving mechanisms are considered to contribute to the overall momentum transport, namely temperature driven and concentration driven mass fluxes. Double-diffusive natural convection mechanism is investigated for the fluid phase in turbulent regime. Equations are presented based on two distinct procedures. The first method considers time averaging of the local instantaneous mass transport equation before the volume average operator is applied. The second methodology employs both averaging operators but in a reverse order. This work is intended to demonstrate that additional transport mechanisms are mathematically derived if temperature, concentration and velocity present simultaneously time fluctuations and spatial deviations within the domain of analysis. A modeled form for the final mass transport equation is presented where turbulent transfer is based on a macroscopic version of the k-ε model.


Sign in / Sign up

Export Citation Format

Share Document