scholarly journals Numerical Analysis of the Flexural Response of Rc Beams Strengthened with NSM-CFRP

2018 ◽  
Vol 28 (3) ◽  
pp. 90-102
Author(s):  
Ahmed Khene ◽  
Habib Abdelhak Mesbah ◽  
Nasr-Eddine Chikh

Abstract In this study, we have chosen to use a new technique of reinforcement with composite materials, namely the near surface mounted technique (NSM). The NSM technique consists in inserting strips of carbon fiber reinforced polymer (CFRP) laminate into slits made beforehand at the level of the concrete coating of the elements to be reinforced. A numerical investigation was conducted on rectangular reinforced concrete beams reinforced with NSM-CFRP using the ATENA finite element code. A parametric study was also carried out in this research. The numerical results were compared with the experimental results of the beams tested by other researchers with the same reinforcement configurations. Overall, numerical behavior laws are rather well-suited to those obtained experimentally and the parametric study has also yielded interesting results.

Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 51 ◽  
Author(s):  
Hee Park ◽  
Jong-Sup Park ◽  
Jae-Yoon Kang ◽  
Woo-Tai Jung

The prestressed near-surface mounted reinforcement (NSMR) using Fiber Reinforced Polymer (FRP) was developed to improve the load bearing capacity of ageing or degraded concrete structures. The NSMR using FRP was the subject of numerous studies of which a mere portion was dedicated to the long-term behavior under fatigue loading. Accordingly, the present study intends to examine the fatigue performance of the NSMR applying the anchoring system developed by Korea Institute of Construction and Building Technology (KICT). To that goal, fatigue test is performed on 6.4 m reinforced concrete beams fabricated with various concrete strengths and developed lengths of the Carbon Fiber Reinforced Polymer (CFRP) tendon. The test results reveal that the difference in the concrete strength and in the developed length of the CFRP tendon has insignificant effect on the strengthening performance. It is concluded that the accumulation of fatigue loading, the concrete strength and the developed length of the tendon will not affect significantly the strengthening performance given that sufficient strengthening is secured.


Sign in / Sign up

Export Citation Format

Share Document