scholarly journals Comparative Analysis of Three Different Negative Emission Technologies, BECCS, Absorption and Adsorption of Atmospheric CO2

2021 ◽  
Vol 31 (3) ◽  
pp. 99-117
Author(s):  
Saeed Talei ◽  
Zahra Soleimani

Abstract Negative Emission Technologies (NETs) are generally considered as vital methods for achieving climate goals. To limit the rise in the global average temperature below 2 °C, a large number of countries that participated in the Paris agreement was virtually unanimous about the effective collaboration among members for the reduction of CO2 emissions throughout this century. NETs on the ground that can remove carbon dioxide from the atmosphere, provide an active option to achieve this goal. In this contribution, we compare limiting factors, cost, and capacity of three different NETs, including bioenergy with carbon capture and storage (BECCS), absorption and adsorption. Although there are several advantages for capturing CO2, still some constraints regarding the high operational cost of NETs and industrial condition of these technologies as a method of climate change mitigation is not clear. Thereby no single process can be considered as a comprehensive solution. Indeed, any developed technologies, in turn, have a contribution to the reduction of CO2 concentration. Extensive research needs to be done to assess and decrease NETs costs and limitations.

2020 ◽  
Vol 10 (11) ◽  
pp. 1023-1029 ◽  
Author(s):  
S. V. Hanssen ◽  
V. Daioglou ◽  
Z. J. N. Steinmann ◽  
J. C. Doelman ◽  
D. P. Van Vuuren ◽  
...  

Author(s):  
Han Dolman

The role of adaptation and mitigation to climate change is described using the concept of planetary boundaries. The future evolution of the main reservoirs of carbon is described. The role of the land and ocean sink, the permafrost feedback and ocean acidification is described. The challenge to keep Earth’s temperature below 1.5 °C or 2.0 ºC is discussed. As this will involve large amounts of negative emission technologies, such as carbon capture and storage, this may be hard to achieve, as an analysis of their potential and environmental costs shows. Geoengineering has a separate of difficult problems to cope with, which makes the application non-trivial. Decarbonization of societies is discussed and an outline given for a transition path towards a carbon-free society.


Projections of the pathways that reduce carbon emission to the levels consistent with limiting global average temperature increases to 1.5°C or 2°C above پاره-p990industrial levels often require negative emission technologies like bioenergy with carbon capture and storage (BECCS), it involves the conversion of biomass to energy, producing CO2 which is sequestered, transported and then permanently stored in a suitable geological formation. The potential of BECCS to remove CO2 from the atmosphere makes it an attractive approach to help achieving the ambitious global warming targets of COP 21. BECCS has a range of variables such as the type of biomass resource, the conversion technology, the CO2 capture process used and storage options. Each of the pathways to connect these options has its own environmental, economic and social impacts. This study gives an overview of Bioenergy with carbon capture and storage for the purpose of carbon mitigation while the challenges associated with using biomaterial was assessed, such as land use, water consumption and its economic constraints. The more certain way forward to underpin BECCS deployment, is to ensure that there is strong social support and integrated policy schemes that recognize, support and reward negative emission, for without negative emissions delivered through BECCS and perhaps other technologies, there is little prospect of the global targets agreed to at Paris, being met.


2018 ◽  
Vol 18 (1) ◽  
pp. 52-75 ◽  
Author(s):  
Jo-Kristian S. Røttereng

This article presents an analysis of twenty-six industrialized countries’ support for the carbon-sequestration-based mitigation measures carbon capture and storage (CCS) and reduced emissions from deforestation and forest degradation (REDD+) during the 2007–2014 period. The article explores whether these proposed solutions to climate change share characteristics that make them feasible for reasons that can be observed in cross-national patterns. Insights from political economy, public policy, and international relations form a “triply engaged” theoretical framework. Relationships are tested using bivariate statistics and multivariate regressions. The analysis reveals that the same states show stronger support for both CCS and REDD+, and mostly for the same reasons. Proponents of such measures are generally petroleum-producing, large, and affluent, and they do not take on more ambitious mitigation targets. This article is the first to suggest that the widely different carbon-sink-based mitigation measures CCS and REDD+ may share similar political functions in similar political contexts.


2012 ◽  
Vol 3 (2) ◽  
pp. 1221-1258 ◽  
Author(s):  
K. Becker ◽  
V. Wulfmeyer ◽  
T. Berger ◽  
J. Gebel ◽  
W. Münch

Abstract. We present a comprehensive, interdisciplinary project which demonstrates that large-scale plantations of Jatropha curcas – if established in hot, dry coastal areas around the world – could capture 17–25 tonnes of carbon dioxide per hectare per year from the atmosphere (averaged over 20 yr). Based on recent farming results it is confirmed that the Jatropha curcas plant is well adapted to harsh environments and is capable of growing alone or in combination with other tree and shrub species with minimal irrigation in hot deserts where rain occurs only sporadically. Our investigations indicate that there is sufficient unused and marginal land for the widespread cultivation of Jatropha curcas to reduce significantly the current upward trend in atmospheric CO2 levels. In a system in which desalinated seawater is used for irrigation and for delivery of mineral nutrients, the sequestration costs were estimated to range from 42–63 € per tonne CO2. This result makes carbon farming a technology that is competitive with carbon capture and storage (CCS). In addition, high-resolution simulations using an advanced land-surface-atmosphere model indicate that a 10 000 km2 plantation could produce a reduction in mean surface temperature and an onset or increase in rain and dew fall at a regional level.


Sign in / Sign up

Export Citation Format

Share Document