scholarly journals Matlab tool REGCONT2: effective source depth estimation by means of Tikhonov’s regularized downwards continuation of potential fields

2018 ◽  
Vol 48 (3) ◽  
pp. 231-254 ◽  
Author(s):  
Roman Pašteka ◽  
David Kušnirák ◽  
Roland Karcol

Abstract Transformation based on downward continuation of potential fields is an important tool in their interpretation – depths of shallowest important sources can be determined by means of stable downward continuation algorithms. We analyse here selected properties of one from these algorithms (based on Tikhonov’s regularization approach) from the scope of two most important discretization parameters – dimensions of the areal coverage of the interpreted field and the sampling interval size. Estimation of the source depth is based on the analysis of computed LP-norms for various continuation depths. A typical local minimum of these norms disappears at the source depth. We show on several synthetic bodies (sphere, horizontal cylinder, vertical rod) and also real-world data-sets (results from a magnetic survey for unexploded ordnance detection) that there is a need for relatively large surroundings around the interpreted anomalies. Beside of this also the sampling step plays its important role – grids with finer sampling steps give better interpretation results, when using this downward continuation method. From this point of view, this method is more suitable for the interpretation of objects in near surface and mining geophysics (anomalies from cavities, unexploded ordnance objects and ore bodies). Anomalies should be well developed and separable, and densely sampled. When this is not valid, several algorithms of interpolation and extrapolation (grid padding methods) can improve the interpretation properties of studied downward continuation method.

2009 ◽  
Vol 52 (2) ◽  
pp. 511-518 ◽  
Author(s):  
Hui ZHANG ◽  
Long-Wei CHEN ◽  
Zhi-Xin REN ◽  
Mei-Ping WU ◽  
Shi-Tu LUO ◽  
...  

2012 ◽  
Vol 9 (1) ◽  
pp. 63-71
Author(s):  
Baghdad Science Journal

A land magnetic survey was carried out along regional profile, which is located at the north part of the Iraqi western desert. It starts from al –Qaam City (at north) toward Rutba City (at south) with a total length of 238km. The survey was carried out along the paved road between the two cities, About 113 measuring points were done with inter-station distance of 2 km (for 198 km) and 2 to 5km (for 40km). Two proton magnetometers were used in this survey. One of them is used for base station monitoring, which was fixed as of Salah Aldin field (Akkas). Its readings were used for diurnal corrections. All magnetic measurements were corrected for normal and topographic corrections. The readings were reduced to a certain base level. The resulted magnetic anomalies show a good correlation with those of Arial - magnetic survey anomalies conducted by (C.G.G, 1974). This is true for those anomalies with wavelength more than 50km. While the land magnetic survey has shown more small anomalies which may reflect near surface sources. In addition, there is a considerable difference between the magnetic intensity values of both surveys. The downward continuation method was used in this study for detecting the depth of magnetic anomaly source. But before applying this method the total magnetic field was converted to its vertical component using computer program packages. The 2.5 mathematical modeling techniques were used for interpreting magnetic anomaly. Several models were suggested according to the geological and geophysical surface and subsurface data. These models clearly suggest that the tectonic of the studied area may be completely affected by deep faults that could reach the basements or even cut it. These faults resulted in tectonic blocks with relative movements that could happen through the geological time, and they may be responsible for the tectonic features of the western desert. These faults could also responsible for the lateral and vertical variations that are noticed in subsurface rocks of the studied area. The subsurface lateral susceptibility variation between the different blocks could result from the variation in physical parameter of the rocks (like porosity, fracture density…) and there is a possibility that rocks beneath 18km (lower crust) still possess some magnetic properties.


1997 ◽  
Vol 102 (5) ◽  
pp. 3171-3171
Author(s):  
W. S. Hodgkiss ◽  
J. J. Murray ◽  
N. O. Booth ◽  
P. W. Schey

Geophysics ◽  
1991 ◽  
Vol 56 (9) ◽  
pp. 1482-1485 ◽  
Author(s):  
Robert Sun ◽  
George A. McMechan

The concept of downward continuation of a seismic wavefield recorded on the earth’s surface to remove near‐surface effects has previously been applied by a number of authors including Schultz and Sherwood (1980), Berryhill (1979, 1984), and McMechan and Chen (1990). Recently, McMechan and Sun (1991) demonstrated, using synthetic elastic data, that downward continuation of an elastic (two‐component) seismic wavefield separates various seismic waves, based on their depth of propagation. This was used to simultaneously remove direct waves and ground roll. The direct compressional and shear waves and the ground roll get left behind in the near surface during downward continuation; subsequent upward continuation reconstructs the surface‐recorded wavefield without the waves propagating in the shallow layers.


Geophysics ◽  
2003 ◽  
Vol 68 (4) ◽  
pp. 1380-1388 ◽  
Author(s):  
Changsoo Shin ◽  
Seungwon Ko ◽  
Wonsik Kim ◽  
Dong‐Joo Min ◽  
Dongwoo Yang ◽  
...  

We present a new, fast 3D traveltime calculation algorithm that employs existing frequency‐domain wave‐equation downward‐continuation software. By modifying such software to solve for a few complex (rather than real) frequencies, we are able to calculate not only the first arrival and the approximately most energetic traveltimes at each depth point but also their corresponding amplitudes. We compute traveltimes by either taking the logarithm of displacements obtained by the one‐way wave equation at a frequency or calculating derivatives of displacements numerically. Amplitudes are estimated from absolute value of the displacement at a frequency. By using the one‐way downgoing wave equation, we also circumvent generating traveltimes corresponding to near‐surface upcoming head waves not often needed in migration. We compare the traveltimes computed by our algorithm with those obtained by picking the most energetic arrivals from finite‐difference solutions of the one‐way wave equation, and show that our traveltime calculation method yields traveltimes comparable to solutions of the one‐way wave equation. We illustrate the accuracy of our traveltime algorithm by migrating the 2D IFP Marmousi and the 3D SEG/EAGE salt models.


2018 ◽  
Vol 6 (4) ◽  
pp. SL1-SL9 ◽  
Author(s):  
David C. Nobes ◽  
Estella Atekwana

Too often, ideas become so well-established that they take on the roles of paradigms, and challenging those paradigms can be difficult, even if they are flawed. Similarly, misconceptions can take root and become firmly entrenched and again are difficult to dislodge. Both of these situations are fundamentally unscientific. Science makes progress when established theories are shown to be incorrect or at least incomplete. To do that, we have to let the data that we collect tell their stories. We should not impose models upon the data, but rather allow the data to yield those models that best represent those features that are absolutely necessary to fit the data, an approach often called “Occam’s inversion.” We also should not impose nonphysical and unscientific limits on our interpretation models. We evaluate several examples from our own experiences: the electrical properties of faults, nonuniqueness in potential fields, the influence of nonaqueous phase liquids and water on ground-penetrating radar and electrical resistivity, and the geophysical response of seafloor mineralization. In each case, a reviewer or another scientist questioned the conclusions using unscientific or incorrect arguments or assumptions. We must let the data speak.


2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Rosalba Napoli ◽  
Gilda Currenti ◽  
Antonino Sicali

A ground magnetic study was performed on the northern upper flank of Mt. Etna to provide new insights into subsurface volcano-tectonic structures. The high resolution magnetic survey was focused on the main structures of Piano delle Concazze, a large flat area dominated by the North- East crater and bounded by the rim of the Valle del Leone depression and the extremity of the North- East Rift. More than 2,500 measurements were gathered with a sampling step of about 3 m covering an area of about 0.2 km2. The total-intensity anomaly field shows the presence of intense South- North aligned maxima related to shallow geological structures affecting this area. Filtering techniques and 2.5D modeling have been applied for the determination of the magnetic source parameters. In order to distinguish the near surface structure, filters of the vertical derivatives, Butterworth high-pass and the tilt derivative were used. The 3D Euler deconvolution has been applied to estimate the depth and the structural indices of the causative sources. The calculated structural indices, that express the geometrical nature of the source, are in agreement with forward modeling. They show that the area is mainly affected by subvertical normal fault and the estimated depth of magnetic sources ranges between 10 m and 40 m. Our total field magnetic survey shows that characteristic magnetic anomalies are related to fault zones in the Piano delle Concazze that are well consistent with the local tectonics. The subsurface structures that have been detected allowed to delineate the general structural framework of the area. In particular, it was possible to clarify that these structures seem to be not deep rooted and consequently they can hardly act as preferential pathways for magma ascent.


Sign in / Sign up

Export Citation Format

Share Document