Chronology of the Huxushan Paleolithic site in south China: Inferred from multiple luminescence dating techniques

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hai-Cheng Lai ◽  
Yi-Yuan Li ◽  
Jia-Fu Zhang ◽  
Liping Zhou

Abstract The Huxushan archaeological site in northern Hunan Province, China, was recently excavated, from which stone tools including handaxes were unearthed. The deposits of the site are chemically weathered, which makes it difficult to date the site using numerical dating techniques except for optically stimulated luminescence (OSL) method. Here, we used various luminescence procedures including single-aliquot regenerative-dose (SAR), sensitivity-corrected multiple-aliquot regenerative-dose (SMAR) and thermally transferred optically stimulated luminescence (TT-OSL) SAR procedures on fine-grained quartz, and two-step post-infrared infrared stimulated luminescence (pIRIR) and multi-elevated-temperature pIRIR (MET-pIRIR) procedures on fine polymineral fractions. The results show that the fine quartz grains have excellent luminescence properties and the quartz SAR-, SMAR- and TT-OSL ages for the samples agree with each other and in stratigraphical order except for one sample. The fine polymineral fractions exhibited relatively weak pIRIR and MET-pIRIR signals, resulting in difficulty in constructing the dose-response curve for MET-pIRIR signals and the stratigraphically inconsistent pIRIR(100, 275) ages. The seven samples yielded their quartz OSL ages ranging from about 62 ka to 133 ka. The two samples from the cultural layer was dated to 78 to 92 ka using different procedures on fine quartz . However, given the systematically older pIRIR ages obtained with the fine polymineral grains for the two samples, their quartz OSL ages are considered to represent the minimal ages of this layer, and their pIRIR(100, 275) ages of 118 and 110 ka represent the upper age limit, indicating that the site was occupied by hominins during Marine Isotope Stage 5.

2015 ◽  
Vol 42 (1) ◽  
Author(s):  
Julia Roskosch ◽  
Sumiko Tsukamoto ◽  
Manfred Frechen

Abstract Luminescence dating was applied on coarse-grained monomineralic potassium-rich feld-spar and polymineralic fine-grained minerals of five samples derived from fluvial deposits of the Riv-er Weser in northwestern Germany. We used a pulsed infrared stimulated luminescence (IRSL) single aliquot regenerative (SAR) dose protocol with an IR stimulation at 50°C for 400 s (50 μs on-time and 200 μs off-time). In order to obtain a stable luminescence signal, only off-time IRSL signal was rec-orded. Performance tests gave solid results. Anomalous fading was intended to be reduced by using the pulsed IRSL signal measured at 50°C (IR50), but fading correction was in most cases necessary due to moderate fading rates. Fading uncorrected and corrected pulsed IR50 ages revealed two major fluvial aggradation phases during the Late Pleistocene, namely during marine isotope stage (MIS) 5d (100 ± 5 ka) and from late MIS 5b to MIS 4 (77 ± 6 ka to 68 ± 5 ka). The obtained luminescence ages are consistent with previous 230Th/U dating results from underlying interglacial deposits of the same pit, which are correlated with MIS 7c to early MIS 6.


1999 ◽  
Vol 51 (2) ◽  
pp. 195-211 ◽  
Author(s):  
Michael R. Waters ◽  
Steven L. Forman ◽  
James M. Pierson

AbstractDiring Yuriakh, an archaeological site on the highest terrace of the Lena River in subarctic eastern Siberia, provides evidence for the oldest and northern-most Early Paleolithic occupation in Asia. Stratigraphic and sedimentological studies at the site show that artifacts occur on a single eolian deflation surface that is underlain by fluvial sediments with inset cryogenic sand wedges and overlain by eolian deposits. Thermoluminescence ages on the fine-grained extracts from the eolian sediments and sand wedges that bound the artifact level indicate that the occupation occurred >260,000 yr B.P. and may possibly date between 270,000 and 370,000 yr B.P. This study documents that the artifacts from Diring Yuriakh are an order of magnitude older than artifacts from any previously reported site from Siberia. The antiquity and subarctic location of Diring Yuriakh indicates that people developed a subsistence strategy capable of surviving rigorous conditions in Siberia by ≥260,000 yr B.P.


2020 ◽  
Vol 3 (1) ◽  
pp. 19 ◽  
Author(s):  
Ștefana-M. Groza-Săcaciu ◽  
Cristian Panaiotu ◽  
Alida Timar-Gabor

The loess-paleosol archive from Mircea Vodă (Romania) represents one of the most studied sections in Europe. We are applying here the current state of the art luminescence dating protocols for revisiting the chronology of this section. Analysis were performed on fine (4–11 µm) and coarse (63–90 µm) quartz extracts using the single aliquot regenerative (SAR) optically stimulated luminescence (OSL) dating protocol. Laboratory generated SAR dose response curves in the high dose range (5 kGy for fine quartz and 2 kGy for coarse quartz) were investigated by employing a test dose of either 17 or 170 Gy. The results confirm the previously reported different saturation characteristics of the two quartz fractions, with no evident dependency of the equivalent dose (De) on the size of the test dose. The OSL SAR ages are discussed and compared to the previously obtained results on quartz and feldspars. The previous reports regarding the chronological discrepancy between the two quartz fractions are confirmed. However, while previous investigations on other sites concluded that this discrepancy appears only above equivalent doses of about 100 Gy, here fine grain quartz ages underestimate coarse quartz ages starting with equivalent doses as low as around 50 Gy.


1999 ◽  
Vol 51 (3) ◽  
pp. 328-341 ◽  
Author(s):  
Naomi Porat ◽  
Li Ping Zhou ◽  
Michael Chazan ◽  
Tamar Noy ◽  
Liora Kolska Horwitz

AbstractThe open-air Acheulian site in Holon, Israel, was dated by the luminescence methods and by electron spin resonance (ESR). Situated in the coastal plain Quaternary Kurkar Group, the Holon site was first excavated in the late 1960s, when typical lower Paleolithic lithics and middle Pleistocene fauna were found. In order to date the site, new test pits were dug adjacent to the earlier excavations and the archaeological bed was exposed in a section comprising a series of paleosols and aeolianites. Alkali feldspars separated from the sediments were dated using the infrared stimulated luminescence and thermoluminescence signals, and quartz was dated using the optically stimulated luminescence signal. The age of the archaeological bed is constrained by two samples to 198,000 ± 22,000–201,000 ± 17,000 yr. The age of the base of the section is 240,000 ± 29,000 yr, and the age of the top is 81,000 ± 8000 yr. Two teeth from the archaeological bed, recovered from the original excavation collection, yielded an average ESR age of 204,000 ± 16,000 yr, calculated using the linear uptake model, which is in a very good agreement with the luminescence ages. These dates place Holon within the range of other late Acheulian and Acheulo-Yabrudian sites in this region such as Tabun E (younger chronology), Yabrud I (archaeological level 18), and Berekhat Ram.


2021 ◽  
pp. 1-11
Author(s):  
Ying Lu ◽  
Xuefeng Sun ◽  
Hailong Zhao ◽  
Peiyang Tan

Abstract Sites dated to the early late Pleistocene are still limited in North China, which has hindered the detailed analysis of the development of Paleolithic industries in the late Pleistocene in this area. The Youfangbei (YFB) site is a newly excavated small-flake-tool Paleolithic site near the Youfang (YF) microblade site in the Nihewan Basin, North China. Because the small-flake-tool industry still existed in the late part of the late Pleistocene and might be related to the emergence of microlithic industries, the relationship between the two sites needs to be determined through a chronological study. Two profiles were excavated, and most of the artifact assemblages were unearthed in the lower profile (T1) from a depth of 0.9 m from the bottom. In this study, the feldspar post-infrared infrared stimulated luminescence method was applied to determine the age of the YFB site. Results showed that the upper profile was deposited from 86–0.5 ka, and the cultural layer in T1 yielded age of 124–82 ka, corresponding to Marine Isotope Stage (MIS) 5, with an irregular but generally mild climate. The age of the YFB site is too old to be directly related to that of the YF site, but it partly bridges a chronological gap of human occupation in the Nihewan Basin.


2009 ◽  
Vol 21 (5) ◽  
pp. 483-499 ◽  
Author(s):  
Glenn W. Berger ◽  
Sara Ante ◽  
Eugene W. Domack

AbstractSediment trap arrays were deployed in Brialmont Cove and Andvord Bay, eastern Gerlache Strait, from December 2001–March 2003. The recovered sediments (representing instantaneous deposition from the viewpoint of luminescence dating) encompass all the annual and local glaciomarine depositional processes. Magnetic susceptibility profiles were used to infer seasonality in the trap cores, and thus to select subsamples for luminescence measurements. Multi-aliquot infrared stimulated luminescence (IRSL) apparent ages were used to assess the effectiveness of ‘clock zeroing’ (by daylight) of light sensitive luminescence within fine silt polymineral samples from each trap depth. IRSL apparent ages for 24 samples indicate that the largest age-depth differences occur with the autumn season samples at both trap sites, suggesting a previously unrecognized and regional (within the Gerlache Strait) change in depositional controls in the autumn compared to other seasons. The apparent ages also indicate some differences between the fjords, and a more complex oceanographic regime at Andvord Bay than at Brialmont Cove. Dry-mass sediment fluxes varied from 0.4 to 0.7 g cm-2 yr-1, with the largest flux at Brialmont Cove (∼0.7 g cm-2 yr-1) occurring in the bottom trap, whereas at Andvord Bay, the largest flux (∼0.6 g cm-2 yr-1) occurred in the middle trap (∼45 m above seafloor).


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Andrew Murray ◽  
Lee J. Arnold ◽  
Jan-Pieter Buylaert ◽  
Guillaume Guérin ◽  
Jintang Qin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document