scholarly journals Review of current approaches to spatially explicit urban vulnerability assessments: hazard complexity, data sources, and cartographic representations

GeoScape ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 47-61
Author(s):  
Pavel Raška ◽  
Martin Dolejš ◽  
Jan Pacina ◽  
Jan Popelka ◽  
Jan Píša ◽  
...  

AbstractSocio-ecological hazards are processes that − depending on the vulnerability of societal systems − may have profound adverse impacts. For this reason, the current discourse in disaster risk reduction (DRR) has been experiencing a shift toward a vulnerability-led paradigm, raising new questions about how to address (i) the complexity of vulnerabilities to multiple hazards, (ii) their cultural, dynamic, and subjective character, and (iii) the effectiveness and legitimacy of vulnerability assessments as decision-support tools. In this paper, we present a review of 707 vulnerability studies (derived from the Clarivate WoS database; 1988−2018) with a particular focus on urban settings and spatially explicit assessments in order to evaluate current efforts to meet the aforementioned issues. The reviewed studies assessed vulnerabilities to 35 hazard types that were predominantly (n=603, 85%) analysed as single hazards (mostly seismic, flood, and groundwater contamination hazards, as well as climate change), whereas only 15% (n=104) of studies focused on multiple hazards (mostly atmospheric hazards). Within the spatially explicit vulnerability studies, almost 60% used data collected by the study itself (mostly seismic hazards), while statistical and combined data were both employed in 20% of cases (mostly floods, climate change, and social and political hazards). Statistical data were found to have only limited transferability, often being generalised to be applicable in small-scale studies, while reducing the role of cultural and contextual factors. Field research data provided high-resolution information, but their acquisition is time-consuming, and therefore fixed at a local scale and single temporal stage. Underlying hazard types and suitable data sources resulting in other differences found a preference towards the specific coverage and resolution of vulnerability maps that appeared in 44% of all reviewed studies. Altogether, the differences we found indicated a division of spatially explicit vulnerability research in two major directions: (i) geological and geomorphological studies focusing on physical vulnerability, using their own data surveys at a detailed scale and lacking links to other hazards, and (ii) other studies (mostly atmospheric hazards and socialpolitical hazards) focusing on social or combined vulnerabilities, using primarily statistical or combined data at a municipal, regional, and country scale with occasional efforts to integrate multiple hazards. Finally, although cartographic representations have become a frequent component of vulnerability studies, our review found only vague rationalisations for the presentation of maps, and a lack of guidelines for the interpretation of uncertainties and the use of maps as decision-support tools.

Fisheries ◽  
2013 ◽  
Vol 38 (3) ◽  
pp. 112-127 ◽  
Author(s):  
Douglas P. Peterson ◽  
Seth J. Wenger ◽  
Bruce E. Rieman ◽  
Daniel J. Isaak

Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2642 ◽  
Author(s):  
Thuc D. Phan ◽  
James C. R. Smart ◽  
Ben Stewart-Koster ◽  
Oz. Sahin ◽  
Wade L. Hadwen ◽  
...  

Bayesian networks (BNs) are widely implemented as graphical decision support tools which use probability inferences to generate “what if?” and “which is best?” analyses of potential management options for water resource management, under climate change and socio-economic stressors. This paper presents a systematic quantitative literature review of applications of BNs for decision support in water resource management. The review quantifies to what extent different types of data (quantitative and/or qualitative) are used, to what extent optimization-based and/or scenario-based approaches are adopted for decision support, and to what extent different categories of adaptation measures are evaluated. Most reviewed publications applied scenario-based approaches (68%) to evaluate the performance of management measures, whilst relatively few studies (18%) applied optimization-based approaches to optimize management measures. Institutional and social measures (62%) were mostly applied to the management of water-related concerns, followed by technological and engineered measures (47%), and ecosystem-based measures (37%). There was no significant difference in the use of quantitative and/or qualitative data across different decision support approaches (p = 0.54), or in the evaluation of different categories of management measures (p = 0.25). However, there was significant dependence (p = 0.076) between the types of management measure(s) evaluated, and the decision support approaches used for that evaluation. The potential and limitations of BN applications as decision support systems are discussed along with solutions and recommendations, thereby further facilitating the application of this promising decision support tool for future research priorities and challenges surrounding uncertain and complex water resource systems driven by multiple interactions amongst climatic and non-climatic changes.


2020 ◽  
Vol 206 (4) ◽  
pp. 423-432 ◽  
Author(s):  
Marc Cotter ◽  
Folkard Asch ◽  
Bayuh Belay Abera ◽  
Boshuwenda Andre Chuma ◽  
Kalimuthu Senthilkumar ◽  
...  

2019 ◽  
Vol 4 (3) ◽  
pp. 32-51 ◽  
Author(s):  
Gustavo Arciniegas ◽  
Rusné Šileryté ◽  
Marcin Dąbrowski ◽  
Alexander Wandl ◽  
Balázs Dukai ◽  
...  

Improving waste and resource management entails working on interrelations between different material flows, territories and groups of actors. This calls for new decision support tools for translating the complex information on flows into accessible knowledge usable by stakeholders in the spatial planning process. This article describes an open source tool based on the geodesign approach, which links the co-creation of design proposals together with stakeholders, impact simulations informed by geographic contexts, systems thinking, and digital technology—the Geodesign Decision Support Environment. Though already used for strategic spatial planning, the potential of geodesign for waste management and recycling is yet to be explored. This article draws on empirical evidence from the pioneering application of the tool to promote spatially explicit circular economy strategies in the Amsterdam Metropolitan Area.


Elem Sci Anth ◽  
2017 ◽  
Vol 5 ◽  
Author(s):  
Erika von Schneidemesser ◽  
Rebecca D. Kutzner ◽  
Julia Schmale†

Decision-support tools are increasingly popular for informing policy decisions linked to environmental issues. For example, a number of decision-support tools on transport planning provide information on expected effects of different measures (actions, policies, or interventions) on air quality, often combined with information on noise pollution or mitigation costs. These tools range in complexity and scale of applicability, from city to international, and include one or several polluting sectors. However, evaluation of the need and utility of tools to support decisions on such linked issues is often lacking, especially for tools intended to support local authorities at the city scale. Here we assessed the need for and value of combining air pollution and climate change mitigation measures into one decision-support tool and the existing policy context in which such a tool might be used. We developed a prototype decision-support tool for evaluating measures for coordinated management of air quality and climate change; and administered a survey in which respondents used the prototype to answer questions about demand for such tools and requirements to make them useful. Additionally, the survey asked questions about participants’ awareness of linkages between air pollution and climate change that are crucial for considering synergies and trade-offs among mitigation measures. Participants showed a high understanding of the linkages between air pollution and climate change, especially recognizing that emissions of greenhouse gases and air pollutants come from the same source. Survey participants were: European, predominantly German; employed across a range of governmental, non-governmental and research organizations; and responsible for a diversity of issues, primarily involving climate change, air pollution or environment. Survey results showed a lack of awareness of decision-support tools and little implementation or regular use. However, respondents expressed a general need for such tools while also recognizing barriers to their implementation, such as limited legal support or lack of time, finances, or manpower. The main barrier identified through this study is the mismatch between detailed information needed from such tools to make them useful at the local implementation scale and the coarser scale information readily available for developing such tools. Significant research efforts at the local scale would be needed to populate decision-support tools with salient mitigation alternatives at the location of implementation. Although global- or regional-scale information can motivate local action towards sustainability, effective on-the-ground implementation of coordinated measures requires knowledge of local circumstances and impacts, calling for active engagement of the local research communities.


Sign in / Sign up

Export Citation Format

Share Document