scholarly journals Erratum to “Roberto Corona, Nicola Montaldo: On the transpiration of wild olives under water-limited conditions in a heterogenous ecosystem with shallow soil over fractured rock. DOI: 10.2478/johh-2020-0022“

2021 ◽  
Vol 69 (1) ◽  
pp. 119
Author(s):  
Roberto Corona ◽  
Nicola Montaldo
Keyword(s):  
2020 ◽  
Vol 68 (4) ◽  
pp. 338-350
Author(s):  
Roberto Corona ◽  
Nicola Montaldo

AbstractMediterranean ecosystems are typically heterogeneous and savanna-like, with trees and grass competing for water use. By measuring sap flow, we estimated high transpiration of wild olive, a common Mediterranean tree, in Sardinia despite dry conditions. This estimate agrees with independent estimates of tree transpiration based on energy balance, highlighting the wild olive’s strong tolerance of dry conditions. The wild olive can develop an adaptation strategy to tolerate dry conditions. In this Sardinian case study, the wild olive grew in shallow soil, and the tree roots expanded into the underlying fractured basalt. The trees survived in dry periods using water infiltrated during wet seasons into fractured rocks and held in soil pockets. We estimated a high upward vertical flux through the bottom soil layer from the underlying substrate, which reached 97% evapotranspiration in August 2011. The water taken up by tree roots from bedrock hollows is usually neglected in ecohydrological modeling.


2015 ◽  
Vol 35 ◽  
pp. 283-287 ◽  
Author(s):  
Margherita Cecilia Spreafico ◽  
Federico Cervi ◽  
Vincent Marc ◽  
Lisa Borgatti
Keyword(s):  

2016 ◽  
Vol 41 ◽  
pp. 22-25 ◽  
Author(s):  
Vittorio Bonaria ◽  
Francesco Faccini ◽  
Ilaria Cinzia Galiano ◽  
Alessandro Sacchini

2016 ◽  
Vol 67 (1) ◽  
pp. 31-42 ◽  
Author(s):  
Y Liu ◽  
L Wang ◽  
B Liu ◽  
M Henderson

2013 ◽  
Vol 6 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Ai Chi ◽  
Li Yuwei

Coal body is a type of fractured rock mass in which lots of cleat fractures developed. Its mechanical properties vary with the parametric variation of coal rock block, face cleat and butt cleat. Based on the linear elastic theory and displacement equivalent principle and simplifying the face cleat and butt cleat as multi-bank penetrating and intermittent cracks, the model was established to calculate the elastic modulus and Poisson's ratio of coal body combined with cleat. By analyzing the model, it also obtained the influence of the parameter variation of coal rock block, face cleat and butt cleat on the elastic modulus and Poisson's ratio of the coal body. Study results showed that the connectivity rate of butt cleat and the distance between face cleats had a weak influence on elastic modulus of coal body. When the inclination of face cleat was 90°, the elastic modulus of coal body reached the maximal value and it equaled to the elastic modulus of coal rock block. When the inclination of face cleat was 0°, the elastic modulus of coal body was exclusively dependent on the elastic modulus of coal rock block, the normal stiffness of face cleat and the distance between them. When the distance between butt cleats or the connectivity rate of butt cleat was fixed, the Poisson's ratio of the coal body initially increased and then decreased with increasing of the face cleat inclination.


Sign in / Sign up

Export Citation Format

Share Document