rock block
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 59)

H-INDEX

15
(FIVE YEARS 4)

Geosciences ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 517
Author(s):  
Alireza Shahbazi ◽  
Ali Saeidi ◽  
Romain Chesnaux ◽  
Alain Rouleau

The specific length of a tunnel (STL) and a new analytical model for calculating the block surface area of the rock mass are introduced. First, a method for determining the appropriate length of a tunnel for a numerical simulation is described. The length is then used to examine the correlation between the inflow rate to the tunnel and the block volume, the block surface area, and the fracture intensity (P32) through analytical and numerical modeling. The results indicate that the length of the tunnel should at least be equal to the least common multiple (LCM) of the apparent spacings of the joint sets at the wall of the tunnel to obtain the more reliable and immediate results for the inflow rate to a tunnel that is excavated in a fractured rock mass. A new analytical model was developed to calculate the block surface area and determine the essential joint set parameters, which include the dip, dip direction, and spacing. The determination of the rock block characteristics through numerical modeling requires considering the intact block for calculations. The results indicated that the inflow rate to the tunnel increased with an increase in fracture intensity and a decrease in block volume and surface area. The STL and the analytical model used for calculating the block surface area are validated through numerical simulations with 3DEC software version 7.0.


2021 ◽  
Author(s):  
Mustafa Utlu ◽  
Muhammed Zeynel ÖZTÜRK ◽  
Mesut Şimşek

Abstract In this study, the rockfall hazard in Hacıabdullah village located in the Central Anatolia region of Turkey was assessed with three-dimensional (3D) rockfall analyses based on unmanned aerial vehicle (UAV) technology using RAMMS (Rockfall software). With several rockfall disasters experienced in the village, the final event occurred in 2008, and several houses were evacuated due to rockfall risk after this event. A total of 17 hanging blocks with fall potential were identified and block dimension measurements were performed during field studies. In order to assess the rockfall hazard in the study area, digital surface model (DSM) data were obtained using high-resolution images obtained by UAV. According to dimensional values, the geometric and volumetric features of each rock were assessed close to reality with the RAMMS 3D rockfall modeling program. As a result of 3-D rockfall modelling, the maximum kinetic energy, maximum velocity, and maximum jump height of the falling blocks are reached to 3476 kJ, 23.1 m/s, and 14.57 m, respectively. The shape and volume of the blocks, as well as the slope features, rocks display differences in their runout distances after falls. A rock block with equant geometry has a runout distance of 53.1-126.9 m, whereas a rock block with flat or long geometry has a runout distance of 34-122.9 m. Rocks that do not move very far from the source area are; in other words, where the free-fall process is dominant, may significantly damage the roads. However, rolling blocks, in other words, blocks which can travel long distances from the source area, have a potential to cause great damage at the settlement areas, roads and trees. According to the hazard map, R6, R12, R13, R14, R15, R16, and R17 blocks involve high and moderate levels of risk for settlement units. R1, R4, R7, R8, R9, and R10 blocks show that the majority of them involve low risk, while a small portion is a moderate risk.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lili Cai ◽  
Shengnian Wang ◽  
Xinqun Gao ◽  
Guoyu Li

The bearing capacity, stability, and durability of subgrade are affected by the compaction quality of fillers to a large extent. In this study, samples of graded coarse-grained fillers with different rock block contents were designed and prepared with the aid of an improved continuous gradation equation for coarse-grained soils. Then standard compaction tests of these samples with different water content conditions were conducted to understand the influence of rock block content on the compaction characteristics of graded coarse-grained fillers. Results show that the compaction curve peaks of graded coarse-grained fillers always increase with the rock block content. The maximum dry density of graded coarse-grained fillers increases linearly with the rock block content in approximation, while the optimal water content is the opposite. The optimal water content of graded coarse-grained fillers decreases in nonlinearity with characteristics of rapidly first and then slowly. Two empirical formulas about the rock block content were summarized for predicting the maximum dry density and optimal water content of graded coarse-grained fillers. The results of this study can provide a reference for the engineering application of graded coarse-grained fillers.


2021 ◽  
Vol 861 (4) ◽  
pp. 042067
Author(s):  
Feng Dai ◽  
Wancheng Zhu ◽  
Min Ren ◽  
Leilei Niu

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5442
Author(s):  
Wenwei Gao ◽  
Hairong Yang ◽  
Le Wang ◽  
Ruilin Hu

Soil–rock mixtures (S-RMs), as a kind of special engineering geological material, need to be studied because of the special structure and complex movement mechanism of their rock blocks, their physical and mechanical properties, and the factors underlying rock block movement in the process of their deformation and failure. In this paper, a series of discrete-element numerical models are constructed in particle flow code software (PFC2D). First, the random structure numerical models of S-RMs with different rock block proportions are established. Then, the parameters of the soil meso-structure are inversed by the biaxial simulation test, and a series of biaxial compressive tests are performed. The characteristics of stress and strain, deformation and failure, and rock block rotation and energy evolution are systematically investigated. The results show the following. (1) As the rock block proportion (confining pressure 0.5 MPa) increases, the peak strength of increases, the fluctuations of the post-peak become more obvious, and the dilatancy of the sample increases. (2) As the rock block proportion increases, the width of the shear band increases, the distribution of cracks becomes more complex and dispersed, and the range of the shear zone increases. (3) The number of rock blocks with rotation also increases significantly as rock block proportion increases, and the rotation angles are mostly between −5° and 5°. (4) The strain energy of S-RMs with different rock block proportions follows the same change rule as axial strain, showing a trend of first increasing and then decreasing, like the stress–strain curve.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yun Tian ◽  
Yong Wu ◽  
Hongtao Li ◽  
Bangzheng Ren ◽  
Hao Wang

The dynamic failure mechanism of horizontally layered dangerous rock during earthquakes is complex and only few studies have addressed the combination of particle flow code (PFC) meso-level failure mechanism and mechanical analysis. Based on fracture mechanics and material mechanics we establish a calculation method for the interlayer load and stability coefficient of horizontal layered dangerous rock during strong earthquakes. The method was applied for calculating the stability of a horizontally layered dangerous slope along a highway in the Sichuan Province (China) during earthquakes as a case study. Using a 3D particle flow simulation technology, a PFC3D model of horizontal layered dangerous rock was established. Its dynamic stability, failure mode and Hilbert-Huang 3D time-frequency characteristics are analyzed, and the results of the simulation are largely consistent with the time of the dangerous rock failure as estimated by our new calculation method. Our study documents that as the seismic acceleration gradually increases, the stability coefficient of the rock block fluctuates more violently and the stability coefficient gradually decreases. The stability coefficient of the rock block decreases fastest between 5 and 6 s and the reduction in the stability coefficient is between 0.12 and 0.25. Before the seismic acceleration reaches the maximum, the dangerous rock blocks on the two main controlling structures collapse and get destroyed. 25 s after the earthquake, the failure mode of the dangerous rock is collapse-slip-rotation. We show that earthquakes with frequencies of 0–10 and 250 Hz have the strongest destructive effect on the stability of the horizontally layered dangerous rocks.


2021 ◽  
Vol 13 (13) ◽  
pp. 2540
Author(s):  
Deheng Kong ◽  
Faquan Wu ◽  
Charalampos Saroglou ◽  
Peng Sha ◽  
Bo Li

The importance of in-situ rock block characterization has been realized for decades in rock mechanics and engineering, yet how to reliably measure and characterize the geometrical properties of blocks in varied forms of exposures and patterns of jointing is still a challenging task. Using a point cloud model (PCM) of rock exposures generated from remote sensing techniques, we developed a consistent and comprehensive method for rock block characterization that is composed of two different procedures and a block indicator system. A semi-automatic procedure towards the robust extraction of in-situ rock blocks created by the deterministic discontinuity network on rock exposures (PCM-DDN) was developed. A 3D stochastic discrete fracture network (DFN) simulation (PCM-SDS) procedure was built based on the statistically valid representation of the discontinuity network geometry. A multi-dimensional block indicator system, i.e., the block size, shape, orientation, and spatial distribution pattern for systematic and objective block characterization, was then established. The developed method was applied to a synthetic model of cardboard boxes and three different rock engineering scenarios, including a road cut slope from Spain and two open-pit mining slopes from China. Compared with existing empirical methods, the proposed procedures and the block indicator system are dependable and practically feasible, which can help enhance our understanding of block geometry characteristics in related applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hong-Sheng Wang ◽  
Hai-Qing Shuang ◽  
Lei Li ◽  
Shuang-Shuang Xiao

To reveal the critical factors of the main roof influencing stability of surrounding rocks of roadways driven along goaf in fully-mechanized top-coal caving faces, this paper builds a structural mechanics model for the surrounding rocks based on geological conditions of the 8105 fully-mechanized caving face of Yanjiahe Coal Mine, and the stress and equilibrium conditions of the key rock block B are analyzed, and focus is on analyzing rules of the key rock block B influencing stability of roadways driven along goaf. Then, the orthogonal experiment and the range method are used to confirm the sensitivity influencing factors in numerical simulation, which are the basic main roof height and the fracture location, the length of the key rock block B, and the main roof hardness in turn. It is revealed that the basic main roof height and its fracture location have a greater influence on stability of god-side entry driving. On the one hand, the coal wall and the roof of roadways driven along goaf are damaged, and the deformation of surrounding rocks of roadways and the vertical stress of narrow coal pillars tend to stabilize along with the increase of the basic main roof height. On the other hand, when the gob-side entry is located below the fracture line of the main roof, the damage caused by gob-side entry is the most serious. Therefore, on-site gob-side entry driving should avoid being below the fracture line of the main roof. At last, industrial tests are successfully conducted in the fully-mechanized top-coal caving faces, 8105 and 8215, of Yanjiahe Coal Mine.


Sign in / Sign up

Export Citation Format

Share Document