fractured rock aquifers
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 13)

H-INDEX

14
(FIVE YEARS 1)

Geosciences ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 400
Author(s):  
David Behrens ◽  
Jeff B. Langman ◽  
Erin S. Brooks ◽  
Jan Boll ◽  
Kristopher Waynant ◽  
...  

The heterogeneity and anisotropy of fractured-rock aquifers, such as those in the Columbia River Basalt Province, present challenges for determining groundwater recharge. The entrance of recharge to the fractured-basalt and interbedded-sediment aquifer in the Palouse region of north-central Idaho is not well understood because of successive basalt flows that act as restrictive barriers. It was hypothesized that a primary recharge zone exists along the basin’s eastern margin at a mountain-front interface where eroded sediments form a more conductive zone for recharge. Potential source waters and groundwater were analyzed for δ18O and δ2H to discriminate recharge sources and pathways. Snowpack values ranged from −22 to −12‰ for δ18O and from −160 to −90‰ for δ2H and produced spring-time snowmelt ranging from −16.5 to −12‰ for δ18O and from −120 to −90‰ for δ2H. With the transition of snowmelt to spring-time ephemeral creeks, the isotope values compressed to −16 and −14‰ for δ18O and −110 and −105‰ for δ2H. A greater range of values was present for a perennial creek (−18 to −13.5‰ for δ18O and −125 to −98‰ for δ2H) and groundwater (−17.5 to −13‰ for δ18O and −132 to −105‰ for δ2H), which reflect a mixing of seasonal signals and the varying influence of vapor sources and sublimation/evaporation. Inverse modeling and the evaluation of matrix characteristics indicate conductive pathways associated with paleochannels and deeper pathways along the mountain-front interface. Depleted isotope signals indicate quicker infiltration and recharge pathways that were separate from, or had limited mixing with, more evaporated water that infiltrated after greater time/travel at the surface.


2021 ◽  
Vol 597 ◽  
pp. 126149
Author(s):  
Jia-Qing Zhou ◽  
Hong-Bin Liu ◽  
Changdong Li ◽  
Xiang-Lan He ◽  
Huiming Tang ◽  
...  

2021 ◽  
Author(s):  
Jost Hellwig ◽  
Michael Stoelzle ◽  
Kerstin Stahl

<p>Groundwater is the main source of freshwater and maintains streamflow during drought. Potential future groundwater and baseflow drought hazards depend on the systems' sensitivity to altered recharge conditions. We performed groundwater model experiments using three different generic stress tests to estimate the groundwater- and baseflow drought sensitivity to changes in recharge. The stress tests stem from a stakeholder co-design process that specifically followed the idea of altering known drought events from the past, i.e. asking whether altered recharge could have made a particular event worse. Here we show that groundwater responses to the stress tests are highly heterogeneous across Germany with groundwater heads in the North more sensitive to long-term recharge and in the Central German Uplands to short-term recharge variations. Baseflow droughts are generally more sensitive to intra-annual dynamics and baseflow responses to the stress tests are smaller compared to the groundwater heads. The groundwater drought recovery time is mainly driven by the hydrogeological conditions with slow (fast) recovery in the porous (fractured rock) aquifers. In general, a seasonal shift of recharge (i.e., less summer recharge and more winter recharge) will therefore have low effects on groundwater and baseflow drought severity. A lengthening of dry spells might cause much stronger responses, especially in regions with slow groundwater response to precipitation. Water management may need to consider the spatially different sensitivities of the groundwater system and the potential for more severe groundwater droughts in the large porous aquifers following prolonged meteorological droughts, particularly in the context of climate change projections indicating stronger seasonality and more severe drought events.</p>


2021 ◽  
Vol 25 (2) ◽  
pp. 1053-1068
Author(s):  
Jost Hellwig ◽  
Michael Stoelzle ◽  
Kerstin Stahl

Abstract. Groundwater is the main source of freshwater and maintains streamflow during drought. Potential future groundwater and baseflow drought hazards depend on the systems' sensitivity to altered recharge conditions. We performed groundwater model experiments using three different generic stress tests to estimate the groundwater and baseflow drought sensitivity to changes in recharge. The stress tests stem from a stakeholder co-design process that specifically followed the idea of altering known drought events from the past, i.e. asking whether altered recharge could have made a particular event worse. Across Germany, groundwater responses to the stress tests are highly heterogeneous, with groundwater heads in the north more sensitive to long-term recharge and in the Central German Uplands to short-term recharge variations. Baseflow droughts are generally more sensitive to intra-annual dynamics, and baseflow responses to the stress tests are smaller compared to the groundwater heads. The groundwater drought recovery time is mainly driven by the hydrogeological conditions, with slow (fast) recovery in the porous (fractured rock) aquifers. In general, a seasonal shift of recharge (i.e. less summer recharge and more winter recharge) will have lesser effects on groundwater and baseflow drought severity. A lengthening of dry spells might cause much stronger responses, especially in regions with slow groundwater response to precipitation. Water management may need to consider the spatially different sensitivities of the groundwater system and the potential for more severe groundwater droughts in the large porous aquifers following prolonged meteorological droughts, particularly in the context of climate change projections indicating stronger seasonality and more severe drought events.


2020 ◽  
Author(s):  
Jost Hellwig ◽  
Michael Stoelzle ◽  
Kerstin Stahl

Abstract. Groundwater is the main source of freshwater and maintains streamflow during drought. Potential future groundwater and baseflow drought hazards depend on systems' sensitivity to altered recharge conditions. We performed groundwater model experiments using three different generic scenarios to estimate the groundwater- and baseflow drought sensitivity to changes in recharge. The scenarios stem from a stakeholder co-design process that specifically followed the idea of altering known drought events from the past, i.e. asking whether altered recharge could have made a particular event worse. Across Germany groundwater responses to the scenarios are highly heterogeneous with groundwater heads in the North more sensitive to long-term recharge and in the Central German Uplands to short-term recharge variations. Baseflow droughts are generally more sensitive to intra-annual dynamics and baseflow responses to the scenarios are smaller compared to the groundwater heads. The groundwater drought recovery time is mainly driven by the hydrogeological conditions with slow (fast) recovery in the porous (fractured rock) aquifers. In general, a seasonal shift of recharge (i.e. less summer recharge and more winter recharge) will therefore have low effects on groundwater and baseflow drought severity. A lengthening of dry spells might cause much stronger responses, especially in regions with slow groundwater response to precipitation. As climate models suggest such directional changes for Germany in the future, the results of the stress tests suggest that groundwater resources in Germany may not decrease in general, but water management may need to consider the potential for more severe groundwater droughts in the large porous aquifers following prolonged meteorological droughts.


2020 ◽  
Vol 273 ◽  
pp. 163-176 ◽  
Author(s):  
Liza K. McDonough ◽  
Helen Rutlidge ◽  
Denis M. O'Carroll ◽  
Martin S. Andersen ◽  
Karina Meredith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document