block face
Recently Published Documents


TOTAL DOCUMENTS

271
(FIVE YEARS 107)

H-INDEX

23
(FIVE YEARS 6)

Author(s):  
Martin Schauflinger ◽  
Tim Bergner ◽  
Gregor Neusser ◽  
Christine Kranz ◽  
Clarissa Read

AbstractHigh-pressure freezing followed by freeze-substitution is a valuable method for ultrastructural analyses of resin-embedded biological samples. The visualization of lipid membranes is one of the most critical aspects of any ultrastructural study and can be especially challenging in high-pressure frozen specimens. Historically, osmium tetroxide has been the preferred fixative and staining agent for lipid-containing structures in freeze-substitution solutions. However, osmium tetroxide is not only a rare and expensive material, but also volatile and toxic. Here, we introduce the use of a combination of potassium permanganate, uranyl acetate, and water in acetone as complementing reagents during the freeze-substitution process. This mix imparts an intense en bloc stain to cellular ultrastructure and membranes, which makes poststaining superfluous and is well suited for block-face imaging. Thus, potassium permanganate can effectively replace osmium tetroxide in the freeze-substitution solution without sacrificing the quality of ultrastructural preservation.


2021 ◽  
Vol 15 ◽  
Author(s):  
Martina Schifferer ◽  
Nicolas Snaidero ◽  
Minou Djannatian ◽  
Martin Kerschensteiner ◽  
Thomas Misgeld

Ultrastructural analysis of discrete neurobiological structures by volume scanning electron microscopy (SEM) often constitutes a “needle-in-the-haystack” problem and therefore relies on sophisticated search strategies. The appropriate SEM approach for a given relocation task not only depends on the desired final image quality but also on the complexity and required accuracy of the screening process. Block-face SEM techniques like Focused Ion Beam or serial block-face SEM are “one-shot” imaging runs by nature and, thus, require precise relocation prior to acquisition. In contrast, “multi-shot” approaches conserve the sectioned tissue through the collection of serial sections onto solid support and allow reimaging. These tissue libraries generated by Array Tomography or Automated Tape Collecting Ultramicrotomy can be screened at low resolution to target high resolution SEM. This is particularly useful if a structure of interest is rare or has been predetermined by correlated light microscopy, which can assign molecular, dynamic and functional information to an ultrastructure. As such approaches require bridging mm to nm scales, they rely on tissue trimming at different stages of sample processing. Relocation is facilitated by endogenous or exogenous landmarks that are visible by several imaging modalities, combined with appropriate registration strategies that allow overlaying images of various sources. Here, we discuss the opportunities of using multi-shot serial sectioning SEM approaches, as well as suitable trimming and registration techniques, to slim down the high-resolution imaging volume to the actual structure of interest and hence facilitate ambitious targeted volume SEM projects.


IAWA Journal ◽  
2021 ◽  
pp. 1-13
Author(s):  
Alan Dickson

Abstract A conventional stereo light microscope was used to image polished wood surfaces at cellular resolution over size scales of the growth ring or larger. Bandpass filtering and local area contrast enhancement were used to aid automatic image thresholding and binarisation. An estimate for the location and proportion of cell collapse was introduced based on the distance between uncollapsed cell lumens. Additionally, spatial associations between vessels were determined using a Euclidean distance transform. The analysis of pith to bark cores provided sufficient detail to show significant intra and inter-annual trends in Pinus radiata tracheid dimensions (wall thickness, wall area, and radial widths). These trends were consistent with expectations and in agreement with the literature. Measured cell dimensions may be influenced by cell collapse and deformation as a result of drying. The analysis of air, kiln and oven-dried Eucalyptus nitens showed that cell collapse was highly variable but generally more prominent in the outer third of growth rings. There were significant changes in vessel shape across the growth rings and vessel area was significantly reduced by drying. The technique provides an intermediate step between detailed microscopy and macroscopic imaging that allows spatial analysis at the wood cell level.


2021 ◽  
Author(s):  
Edgar Garza Lopez ◽  
Zer Vue ◽  
Prasanna Katti ◽  
Kit Neikirk ◽  
Michelle Biete ◽  
...  

Analysis of 3D structures is of paramount importance in cellular biology. Although light microscopy and transmission electron microscopy (TEM) have remained staples for imaging cellular structures, they lack the ability to image in 3D. However, recent technological advances, such as serial block-face scanning electron microscopy (SBF-SEM) and focused ion beam scanning electron microscopy (FIB-SEM), have allowed researchers to observe cellular ultrastructure in 3D. Here, we propose a standardized protocol using the visualization software Amira to quantify organelle morphologies in 3D; this method allows researchers to produce accurate and reproducible measurements of cellular structure characteristics. We demonstrate this applicability by utilizing SBF-SEM and Amira to quantify mitochondria and endoplasmic reticulum (ER) structures.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthew J. Hayes ◽  
Dhani Tracey-White ◽  
Jaimie Hoh Kam ◽  
Michael B. Powner ◽  
Glen Jeffery

AbstractVertebrate photoreceptors contain large numbers of closely-packed mitochondria which sustain the high metabolic demands of these cells. These mitochondria populations are dynamic and undergo fusion and fission events. This activity serves to maintain the population in a healthy state. In the event of mitochondrial damage, sub-domains, or indeed whole mitochondria, can be degraded and population homeostasis achieved. If this process is overwhelmed cell death may result. Death of photoreceptors contributes to loss of vision in aging individuals and is associated with many eye diseases. In this study we used serial block face scanning electron microscopy of adult Macaca fascicularis retinae to examine the 3D structure of mitochondria in rod and cone photoreceptors. We show that healthy-looking photoreceptors contain mitochondria exhibiting a range of shapes which are associated with different regions of the cell. In some photoreceptors we observe mitochondrial swelling and other changes often associated with cellular stress. In rods and cones that appear stressed we identify elongated domains of mitochondria with densely-packed normal cristae associated with photoreceptor ciliary rootlet bundles. We observe mitochondrial fission and mitochondrion fragments localised to these domains. Swollen mitochondria with few intact cristae are located towards the periphery of the photoreceptor inner-segment in rods, whilst they are found throughout the cell in cones. Swollen mitochondria exhibit sites on the mitochondrial inner membrane which have undergone complex invagination resulting in membranous, electron-dense aggregates. Membrane contact occurs between the mitochondrion and the photoreceptor plasma membrane in the vicinity of these aggregates, and a series of subsequent membrane fusions results in expulsion of the mitochondrial aggregate from the photoreceptor. These events are primarily associated with rods. The potential fate of this purged material and consequences of its clearance by retinal pigment epithelia are discussed.


SLEEP ◽  
2021 ◽  
Author(s):  
Carlos C Flores ◽  
Sophia S Loschky ◽  
William Marshall ◽  
Giovanna Maria Spano ◽  
Mariangela Massaro Cenere ◽  
...  

Abstract The cellular consequences of sleep loss are poorly characterized. In the pyramidal neurons of mouse frontal cortex we found that mitochondria and secondary lysosomes occupy a larger proportion of the cytoplasm after chronic sleep restriction compared to sleep, consistent with increased cellular burden due to extended wake. For each morphological parameter the within-animal variance was high, suggesting that the effects of sleep and sleep loss vary greatly among neurons. However, the analysis was based on 4-5 mice/group and a single section/cell. Here, we applied serial block-face scanning electron microscopy to identify signatures of sleep and sleep loss in the Drosophila brain. Stacks of images were acquired and used to obtain full 3D reconstructions of the cytoplasm and nucleus of 263 Kenyon cells from adult flies collected after a night of sleep (S) or after 11 hours (SD11) or 35 hours (SD35) of sleep deprivation (9 flies/group). Relative to S flies, SD35 flies showed increased density of dark clusters of chromatin and of Golgi apparata and a trend increase in the percent of cell volume occupied by mitochondria, consistent with increased need for energy and protein supply during extended wake. Logistic regression models could assign each neuron to the correct experimental group with good accuracy, but in each cell nuclear and cytoplasmic changes were poorly correlated, and within-fly variance was substantial in all experimental groups. Together, these results support the presence of ultrastructural signatures of sleep and sleep loss but underscore the complexity of their effects at the single-cell level.


Sign in / Sign up

Export Citation Format

Share Document