scholarly journals Empirical method for modeling the percent depth dose curves of electron beam in radiation therapy

2021 ◽  
Vol 27 (4) ◽  
pp. 315-321
Author(s):  
Dong-Ji Chen ◽  
Yan-Shan Zhang ◽  
Yan-Cheng Ye ◽  
Jia-Ming Wu

Abstract Introduction: This study presents an empirical method to model the electron beam percent depth dose curve (PDD) using the primary and tail functions in radiation therapy. The modeling parameters N and n can be used to derive the depth relative stopping power of the electron energy in radiation therapy. Methods and Materials: The electrons PDD curves were modeled with the primary-tail function in this study. The primary function included exponential function and main parameters of N, µ while the tail function was composed by a sigmoid function with the main parameter of n. The PDD for five electron energies were modeled by the primary and tail function by adjusting the parameters of N, µ and n. The R50 and Rp can be derived from the modeled straight line of 80% to 20% region of PDD. The same electron energy with different cone sizes was also modeled with the primary-tail function. The stopping power for different electron energies at different depths can also be derived from the parameters of N, µ and n. Percent ionization depth curve can then be derived from the percent depth dose by dividing its depth relevant stopping power for comparing with the original water phantom measurement. Results: The main parameters N, n increase, but µ decreases in primary-tail function when electron energy increased. The relationship of parameters n, N and LN(-µ) with electron energy are n = 31.667 E0 - 88, N = 0.9975 E0 - 2.8535, LN(-µ) = -0.1355 E0 - 6.0986, respectively. Stopping power of different electron energy can be derived from n and N with the equation: stopping power = (−0.042 ln N E 0 + 1.072)e(−n−E0·5·10−5+0.0381·d), where d is the depth in water. Percent depth dose was derived from the percent reading curve by multiplying the stopping power relevant to the depth in water at certain electron energy. Conclusion: The PDD of electrons at different energies and field sizes can be modeled with an empirical model to deal with the stopping power calculation. The primary-tail equation provides a uncomplicated solution than a pencil beam or other numerical algorism for investigators to research the behavior of electron beam in radiation therapy.

Author(s):  
David C. Joy ◽  
Suichu Luo ◽  
John R. Dunlap ◽  
Dick Williams ◽  
Siqi Cao

In Physics, Chemistry, Materials Science, Biology and Medicine, it is very important to have accurate information about the stopping power of various media for electrons, that is the average energy loss per unit pathlength due to inelastic Coulomb collisions with atomic electrons of the specimen along their trajectories. Techniques such as photoemission spectroscopy, Auger electron spectroscopy, and electron energy loss spectroscopy have been used in the measurements of electron-solid interaction. In this paper we present a comprehensive technique which combines experimental and theoretical work to determine the electron stopping power for various materials by electron energy loss spectroscopy (EELS ). As an example, we measured stopping power for Si, C, and their compound SiC. The method, results and discussion are described briefly as below.The stopping power calculation is based on the modified Bethe formula at low energy:where Neff and Ieff are the effective values of the mean ionization potential, and the number of electrons participating in the process respectively. Neff and Ieff can be obtained from the sum rule relations as we discussed before3 using the energy loss function Im(−1/ε).


2021 ◽  
Vol 5 (3) ◽  
Author(s):  
Ayesha Ikhlaq ◽  
Saeed Ahmad Buzdar ◽  
Muhammad Usman Mustafa ◽  
Sana Salahuddin ◽  
Mehr-Un-Nisa ◽  
...  

In external beam radiation therapy, electron and photon beams have extraordinary characteristics in the treatment of cancer. The electron and photon beam characteristic are essential to study before calibration of machine. This study focused on the dosimetric characteristics of different energies of electron beams for different field size. The basic objective of this work is, to calculate dosimetric parameters and characteristics of electron beam, specially depth dose characteristics along central axis. In this work, 6 MeV, 9 MeV, 12 MeV, 15 MeV and 18 MeV of electron beam and 6 MV and 15 MV of photon beam with different field size is used. Characteristics of depth dose of electron and photon beam in water have analyzed to provide better quality of radiation therapy treatment planning. The different beam characteristics are due to different interactions that occurs between electron beams giving them a definite range whereas photon beams are attenuated leading to dose deposition and much larger range with no definite end. Depth dose characteristics of electron and photon beams do not show same characteristics as interaction of beam with matter depends on the quality of beam. Attenuation and penetration factors change with changing dosimetric parameters. Complete analysis of dosimetric characteristics of electron and photon beam help to choose more accurate beam for the treatment of cancer. This work will help to increase accuracy in treatment of cancer with radiotherapy.


2019 ◽  
Vol 163 ◽  
pp. 22-25 ◽  
Author(s):  
Nguyen Anh Tuan ◽  
Chau Van Tao ◽  
Chary Rangacharyulu

Author(s):  
J. R. Dunlap ◽  
S. Luo ◽  
D. C. Joy ◽  
D. C. Chakoumakos ◽  
S. Zhu ◽  
...  

Several studies have been undertaken to investigate the fine structure and superconductive properties of high temperature superconductors. Yuan et al. utilized electron energy loss spectroscopy (EELS) to determine the dielectric function of the superconductor Ba2YCu3O7-x. In this study we performed EELS on the superconductor Bi1.8Pb0.3Sr2Ca2Cu3O10 at both room temperature and below the transition temperature and calculated such properties as the dielectric fuction, the inelastic mean free path and the stopping power for this material.Powdered Bi1.8Pb0.3Sr2Ca2Cu3O10 was dispersed by sonication in a 0.2% (wt/v) solution of poly-(N-vinylpyrrolidone) in isoproponal. Individual crystals were allowed to settle and dry on a lacey cabon film. Figure 1 shows a typical individual crystal and Fig.2 shows a typical diffraction pattern. Electron energy loss spectra were recorded from single crystals which extended into holes in the film. The EEL spectra were recorded at room temperature and at 95°K which is below the transition temperature of 105 °K.


2021 ◽  
Vol 19 (6) ◽  
pp. 622-632
Author(s):  
Jorge Homero Wilches Visbal ◽  
Patrícia Nicolucci

Electron beam radiotherapy is the most widespread treatment modality todeal with superficial cancers. In electron radiotherapy, the energy spectrum isimportant for electron beam modelling and accurate dose calculation. Since thepercentage depth-dose (PDD) is a function of the beam’s energy, the reconstruction of the spectrum from the depth-dose curve represents an inverse problem.Thus, the energy spectrum can be related to the depth-dose by means of anappropriate mathematical model as the Fredholm equation of the first kind.Since the Fredholm equation of the first kind is ill-posed, some regularizationmethod has to be used to achieve a useful solution. In this work the Tikhonovregularization function was solved by the generalized simulated annealing optimization method. The accuracy of the reconstruction was verified by thegamma index passing rate criterion applied to the simulated PDD curves forthe reconstructed spectra compared to experimental PDD curves. Results showa good coincidence between the experimental and simulated depth-dose curvesaccording to the gamma passing rate better than 95% for 1% dose difference(DD)/1 mm distance to agreement (DTA) criteria. Moreover, the results showimprovement from previous works not only in accuracy but also in calculationtime. In general, the proposed method can help in the accuracy of dosimetryprocedures, treatment planning and quality control in radiotherapy.


1983 ◽  
Vol 23 ◽  
Author(s):  
A. Laugier ◽  
D. Barbier ◽  
G. Chemisky

ABSTRACTPEBA induced thermal effects in GaAs and InP have been simulated. Monte-Carlo calculation has been used to determine universal electron energy loss functions in the 5–50 keV energy range for these materials. Similar electron depth-dose profiles of a polykinetic electron beam pulse is deduced in both GaAs and lnP. A simple adiabatic approach is sufficient to establish relationship between melting depths and fluences. Thermal effects homogeneity and surface degradation are discussed for both crystalline and amorphous materials using variable electron energy deposition profiles. Correlation is made between experimentally measured degradation thresholds and calculated fluence windows within which melting effects are expected.


Radiology ◽  
1978 ◽  
Vol 126 (1) ◽  
pp. 249-251 ◽  
Author(s):  
Faiz M. Khan ◽  
Wilfred Sewchand ◽  
Seymour H. Levitt

Sign in / Sign up

Export Citation Format

Share Document