scholarly journals Electrical Resistivity Tomography for Sustainable Groundwater Development in a Complex Geological Area

2019 ◽  
Vol 66 (2) ◽  
pp. 121-128
Author(s):  
Adedibu Sunny Akingboye ◽  
Isaac Babatunde Osazuwa ◽  
Muraina Zaid Mohammed

AbstractElectrical resistivity tomography (ERT) was used for delineating significant subsurface hydrogeological features for sustainable groundwater development in Etioro-Akoko area, Southwestern Nigeria. This study was necessitated by challenges posed on groundwater supplies from wells and boreholes in Etioro-Akoko and the neighbouring fast growing towns and villages. Field data were acquired over the area with ABEM Lund Resistivity Imaging System and were subsequently processed and inverted through RES2DINVx64 software. Results showed four distinct subsurface layers: topsoil, weathered layer, fractured bedrock and fresh bedrock (basal unit). Localised bedrock depressions occasioned by fracturing and deep weathering of less stable bedrock minerals were delineated with resistivity and thickness values ranging from 50 to 650 Ωm and 12 to ---gt--- 25 m, respectively. The localised depressions mirrored uneven bedrock topography and served as the preferential groundwater storage and hydrogeological zones in the area. The two hydrogeological zones significant for groundwater development included overburden-dependent aquifers and fractured dependent bedrock aquifers. It was, therefore, concluded that groundwater storage potential was depended on hydrogeological zones particularly at major localised bedrock depressions where fractures and groundwater recharges/discharges were evident. Wells and boreholes were proposed at bedrock depressions with thickness value not less than 12 and ---gt--- 25 m, respectively, for enhanced groundwater sustainability and quality assurance in the area.

Author(s):  
O. F. Ogunlana ◽  
O. M. Alile ◽  
O. J. Airen

The Electrical Resistivity Tomography (ERT) data was acquired within the area suspected to have high potential for bitumen occurrence using the Wenner-Schlumberger configuration in Agbabu, southwestern Nigeria. PASI 16GL-N Earth resistivity meter instrument was used to acquire data along five (5) traverses with 5m electrode spacing and traverses length of 150m. The apparent resistivity values obtained was processed using RES2DINV software which helped to automatically obtain the 2D inversion model of the subsurface. This study has shown the occurrence of bitumen between the depth of 13.4m and 9.93m for Traverses 1, 2, 3 and Traverses 4, 5 respectively in a 2-Dimensional electrical resistivity images for boreholes with a depth of about 18m. The results indicate that the bitumen is characterized by good lateral continuity and is sufficiently thick for commercial exploitation.


2021 ◽  
Vol 880 (1) ◽  
pp. 012025
Author(s):  
N Akhtar ◽  
M S Mislan ◽  
M I Syakir ◽  
M T Anees ◽  
M S M Yusuff

Abstract Groundwater plays a major role as an alternative freshwater resource for irrigation and industrial purposes. This study aimed to characterize the subsurface of aquifer systems in TelukIntan district, Perak, Malaysia using Electrical Resistivity Tomography (ERT) and Induced Polarization (IP) methods. The horizontal profiling (TL1 and TL2) was conducted at length of 400 m. The estimated depth is 150 m below ground level (b.g.l.). An ABEM SAS 4000 Terrameter and ABEM LUND ES464 Imaging System were applied to create a resistivity pseudo-section using polar-dipole configuration. The collected geo-electrical data was interpreted using RESIST software with partial curve matching and computer iteration. ERT and IP survey profile results were validated with in-situ borehole data from borehole 2 (B2). Eleven samples of soil profile were collected at depth from 5.6 m to 61.2 m, with average percentage of sand, silt and clay are 93.77 %, 5.78 % and 0.02 %, respectively. The geology of subsurface settings is the key factor in determining the aquifer system characterized by interlayer sand-silt sequence indicating the saturation zone of aquifer underlain by shale at the bottom. Further study on hydraulics perspective is important to understand the overall capacity of the aquifer.


2020 ◽  
Vol 2 (12) ◽  
Author(s):  
Joel Olayide Amosun ◽  
Olufemi Adigun Alagbe ◽  
Tokunbo Sanmi Fagbemigun ◽  
Oluseun Adetola Sanuade ◽  
Olayiwola Grace Olaseeni

2019 ◽  
Vol 24 (1) ◽  
pp. 27-38
Author(s):  
B. Butchibabu ◽  
Prosanta K. Khan ◽  
P.C. Jha

Geophysical investigations were carried out for evaluation of damage and to assess the possible causes for repeated occurrence of damage at one of the buildings constructed for oil pumping in the northern part of India. Electrical Resistivity Tomography (ERT) and Seismic Refraction Tomography (SRT) techniques were adopted for studying the subsurface of the area around the building with an objective of ascertaining the cause of damage. High resolution imaging was done using both the techniques in this investigation. ERT delineated the presence of low resistivity (2 ohm-m) water filled voids below the structures and mapped different subsurface layers such as sandy soil, clay and sandstone in the study area. SRT revealed P-wave velocity ( V P ) of the subsurface medium in the range of 400–3,400 m/s. Corresponding densities and S-wave velocities ( V S ) were determined based on Gardner's and Castagna's relationships. Subsequently, the V P , V S and the modulus values were used in estimating compressibility of soil and rock strata. Results showed near surface layers were characterized by high compressibility (26.673 × 10 −5 Pa −1 ), decreases with depth. This paper presents the details of the site, techniques used in the investigation and correlation of geophysical results with lithological information, and the subsequent analysis for understanding the distress in the subsurface of the study area.


2020 ◽  
Vol 8 (2) ◽  
pp. 146
Author(s):  
Olawale OlakunleOsinowo ◽  
Ahmed Kehinde Usman ◽  
Ayotunde Allen Omitoogun

This study applied Electrical Resistivity Tomography geophysical investigation technique to evaluate the gold mineralization potential of Iperindo in Ilesha Schist Belt, southwestern Nigeria, where commercial exploitation capable of generating revenue and employment for the inhabitants has been challenged by lack / inadequate subsurface geological/geophysical information. The filtered and inverted electrical resistivity data acquired through five (5) 336 m long E – W trending profiles, established 10 m apart from each other, delineate isolated near surface but thick (> 30 m) low resistivity zones, especially at the eastern and western ends of the study area. Some of the delineated low resistivity zones (3 – 200 𝛀m) present vertical sharp edges, likely created by vertical faults that flank the zones on both sides. The low resistivity of these zones could be attributed to the occurrence of conductive material such as gold and associated base metals which probably exist in pegmatitic veins within the zones.   


2021 ◽  
Vol 47 (2) ◽  
pp. 597-608
Author(s):  
Mutiu A Fakunle ◽  
Muhydeen A Ibraheem ◽  
Wasiu B Agbaje ◽  
Luqman A Abidoye

The presence of Petroleum Hydrocarbons (PHCs) in hand-dug wells has become a concern to the residents of Ayetoro area, Osogbo. Consequently, the detection of PHCs was evaluated using, nine Vertical Electrical Soundings (VES) and 2D electrical resistivity tomography surveys. Soil samples collected were analyzed for porosity and permeability. Hand-dug well water samples were screened for PHCs. VES revealed that second layer had high apparent resistivity of 14415.0 Ωm, indicating presence of PHCs that had penetrated to maximum depth of 19.1 m. The highest resistivity of the control points was 48.0 Ωm, indicating absence of PHCs. The 2D resistivity revealed highest value of 3622 Ωm and had migrated to a depth of 10.0 m. The porosity (0.40) and permeability (6.87516 x 10–4 cm/s) were typical of silty clay which allowed passage of PHCs. Hydro-chemical analysis indicated presence of PHCs (0.50–11.00 mg/L). The study has established presence of PHCs in soils and hand-dug wells. Keywords: Petroleum Hydrocarbons, Soil, Groundwater, Electrical resistivity tomography


Sign in / Sign up

Export Citation Format

Share Document