electrode spacing
Recently Published Documents


TOTAL DOCUMENTS

362
(FIVE YEARS 136)

H-INDEX

19
(FIVE YEARS 5)

2022 ◽  
Vol 2152 (1) ◽  
pp. 012031
Author(s):  
Weijie Gou ◽  
Lihong Wang

Abstract A high-speed camera is used to observe the arc starting and arc stabilization process of the TIG-MIG hybrid welding system. Paschen’s law is used to analyze the path of TIG welding arc breakdown under the condition of the conductive channel provided by the MIG welding arc, and the arc starting process of the double arc hybrid welding is determined. The study found that when the electrode spacing is less than 8.5 mm, two molten pools can form a common molten pool after arc initiation of MIG welding; when the spacing is 10 mm, the two molten pools after arc initiation form a “8” shape; When the distance is 12 mm, there is a low temperature zone between the two arcs, which is separated.


2022 ◽  
Vol 306 ◽  
pp. 130841
Author(s):  
Paul C. Okonkwo ◽  
Himangshu Bhowmik ◽  
Ibrahim B. Mansir ◽  
Mohammed Ahmed Awadh Al Sarj Al Marhoon ◽  
Naif Fawaz Ahmed Al Sfarini

2022 ◽  
Vol 334 ◽  
pp. 08003
Author(s):  
Jakub Dziegielowski ◽  
Gresa Bregu ◽  
Luke Hulse ◽  
Mirella Di Lorenzo

Soil microbial fuel cells (SMFCs) are a sub-class of the microbial fuel cells family, in which the soil acts as the electrolyte, and as the source of microorganisms and organic fuel. Given the great simplicity of the system design, SMFCs show a promising avenue for energy generation in remote areas. In this study, we investigate the influence that geometrical factors, such as the electrode orientation, have on the electrochemical performance of SMFCs. Two types of electrode orientations: horizontal and vertical, were tested. Additionally, the influence of anode and cathode immersion in soil was explored too. Our results demonstrate that vertical positioning of the cathode in soil is not a viable option. The increase in cathodic immersion leads to a more rapid performance decay, attributed to more anaerobic conditions along soil’s depth. The increase in anode immersion has a positive effect on the evolution of the negative electrode potential. However, with the increase in electrode spacing, the performance drops due to a greater internal resistance.


2021 ◽  
pp. 1-15
Author(s):  
Nian Cheng ◽  
Jingyi Huang ◽  
Yingru Wang

It is of great significance to study the treatment of organic dye pollution. In this work, a method of electrochemical treatment for reactive blue 19 dye (RB19) wastewater system was established, and it was applied to the actual dye wastewater treatment. The effects of applied voltage, electrolyte concentration, electrode spacing, and initial concentration on the removal effect of RB19 have been studied in detail. The results show that the removal rate of RB19 can reach 82.6% and the chemical oxygen demand (CODcr) removal rate is 54.3% under optimal conditions. The removal of RB19 in the system is mainly the oxidation of hydroxyl free radicals. The possible degradation pathway is inferred by ion chromatography: hydroxyl free radicals attack the chromophoric group of RB19 to make it fall off, and then decompose it into ring-opening. The product is finally oxidized to CO2 and water. The kinetic fitting is in accordance with the zero-order reaction kinetics. At the same time, using the established electrochemical system to treat the actual dye wastewater has also achieved good results. After 3 hours of treatment, the CODcr removal rate of the raw water is 44.8%, and the CODcr removal of the effluent can reach 89.5%. The degradation process conforms to the zero-order reaction kinetics. The result is consistent with the electrochemical treatment of RB19.


2021 ◽  
Vol 51 (4) ◽  
pp. 295-320
Author(s):  
Adedibu Sunny AKINGBOYE ◽  
Andy Anderson BERY

The selection of a choice electrode is pertinent to attenuating noise and improving geophysical tomographic inversion results. Besides, the detailed understanding of the geodynamic condition of subsurface formation is crucial to sustainable potable groundwater abstraction. Hence, the subsurface lithostratigraphic units and groundwater potential of two sites (i.e., Site 1 and Site 2) within the Universiti Sains Malaysia were evaluated using borehole-constrained electrical resistivity tomography (ERT) and induced polarisation (IP) tomography. Both methods employed the resolution capacities of stainless-steel and copper electrodes at dual-spacing. The ERT and IP field data and inversion results for copper electrodes were generally robust due to the generated higher positive data points and lower RMS errors, percentage relative differences, and mean absolute percentage errors (MAPE) than the stainless-steel electrodes, especially at Site 1 with a profile length of 200 m and an electrode spacing of 5 m. However, both electrodes tend to produce inversion models with almost the same parameters at Site 2, using half the profile length and electrode spacing of Site 1, i.e., 100 m and 2.5 m, respectively. Thus, the sensitivities and resolution capacities of the tomographic electrodes are heavily influenced by electrode spacing, profile length, amount of injected current, and depth of investigation. The borehole lithostratigraphic units, typically sandy silt, sand, and silty sand, have good correlations with the ERT and IP inversion results. The variability in observed resistivity and chargeability values were due to heterogeneous weathered materials and saturating water fills within the fractured and deeply-weathered granitic bedrock, with <200 Ωm and a chargeability of >1.8 msec. The models' median depth of >40 m mapped for the weathered and/or fractured sections was suggestive of high groundwater-yielding capacity in boreholes to sustain a part of the university community. 


2021 ◽  
Vol 1 (2) ◽  
pp. 84-97
Author(s):  
Musa Adesola Bawallah ◽  
Stephen Olubusola Ilugbo ◽  
Kesyton Oyamenda Ozegin ◽  
Babatunde A Adebo ◽  
Isaac Aigbedion ◽  
...  

This research evaluates the significance of geotechnical and Electrical Resistivity methods in studying structural integrity as fundamental factors that may account for failure in a typical sedimentary environment of Ukpenu Primary School, Ekpoma, Edo State, Nigeria. Two methods were used in this study such as the Electrical Resistivity approach involving the use of Lateral Horizontal Profiling (LHP), 2D Electrical Resistivity Tomography (ERT), and Vertical Electrical Sounding (VES) techniques. While geotechnical method involved the collection of soil samples from the study locations for the characterization of the soil properties that are very vital to foundation studies. Nine VES were carried out using Schlumberger array with current electrode spacing varying from 1 to 40 m, with 2-D ERT using Dipole-Dipole electrode array with inter-station separation of 5 m and an expansion factor varied from 1 to 5 while LHP involve Wenner array with an electrode spacing of 5 m interval and was used to determine the vulnerability factors for the building sustainability. The VES interpretation results were used to determine the second-order parameters for the determination of vulnerability. The results obtained from the two methods review that both are very fundamental to foundation dynamics. However, electrical attributes were found to give better information in terms of depth, lateral extent, layer stratification, and nature of materials which make it an indispensable tool over geotechnical attributes whose depth of investigation is up to a maximum of 5 m which poses great limitation in the evaluation of structural integrity, against stress, and strain occasion by geodynamic activities that often result into fracture, crack, highly weathered formation that usually goes beyond the shallow depth of investigation. Therefore, it can be stated that resistivity attributes account for 90% of the major contributing factors that affect foundation vulnerability.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chiara Bartolucci ◽  
Claudio Fabbri ◽  
Corrado Tomasi ◽  
Paolo Sabbatani ◽  
Stefano Severi ◽  
...  

Atrial fibrillation (AF) is the most common cardiac arrhythmia and catheter mapping has been proved to be an effective approach for detecting AF drivers to be targeted by ablation. Among drivers, the so-called rotors have gained the most attention: their identification and spatial location could help to understand which patient-specific mechanisms are acting, and thus to guide the ablation execution. Since rotor detection by multi-electrode catheters may be influenced by several structural parameters including inter-electrode spacing, catheter coverage, and endocardium-catheter distance, in this study we proposed a tool for testing the ability of different catheter shapes to detect rotors in different conditions. An approach based on the solution of the monodomain equations coupled with a modified Courtemanche ionic atrial model, that considers an electrical remodeling, was applied to simulate spiral wave dynamics on a 2D model for 7.75 s. The developed framework allowed the acquisition of unipolar signals at 2 KHz. Two high-density multipolar catheters were simulated (Advisor™ HD Grid and PentaRay®) and placed in a 2D region in which the simulated spiral wave persists longer. The configuration of the catheters was then modified by changing the number of electrodes, inter-electrodes distance, position, and atrial-wall distance for assessing how they would affect the rotor detection. In contact with the wall and at 1 mm distance from it, all the configurations detected the rotor correctly, irrespective of geometry, coverage, and inter-electrode distance. In the HDGrid-like geometry, the increase of the inter-electrode distance from 3 to 6 mm caused rotor detection failure at 2 mm distance from the LA wall. In the PentaRay-like configuration, regardless of inter-electrode distance, rotor detection failed at 3 mm endocardium-catheter distance. The asymmetry of this catheter resulted in rotation-dependent rotor detection. To conclude, the computational framework we developed is based on realistic catheter shapes designed with parameter configurations which resemble clinical settings. Results showed it is well suited to investigate how mapping catheter geometry and location affect AF driver detection, therefore it is a reliable tool to design and test new mapping catheters.


2021 ◽  
Vol 15 ◽  
Author(s):  
Tyler S. Davis ◽  
Rose M. Caston ◽  
Brian Philip ◽  
Chantel M. Charlebois ◽  
Daria Nesterovich Anderson ◽  
...  

Accurate anatomical localization of intracranial electrodes is important for identifying the seizure foci in patients with epilepsy and for interpreting effects from cognitive studies employing intracranial electroencephalography. Localization is typically performed by coregistering postimplant computed tomography (CT) with preoperative magnetic resonance imaging (MRI). Electrodes are then detected in the CT, and the corresponding brain region is identified using the MRI. Many existing software packages for electrode localization chain together separate preexisting programs or rely on command line instructions to perform the various localization steps, making them difficult to install and operate for a typical user. Further, many packages provide solutions for some, but not all, of the steps needed for confident localization. We have developed software, Locate electrodes Graphical User Interface (LeGUI), that consists of a single interface to perform all steps needed to localize both surface and depth/penetrating intracranial electrodes, including coregistration of the CT to MRI, normalization of the MRI to the Montreal Neurological Institute template, automated electrode detection for multiple types of electrodes, electrode spacing correction and projection to the brain surface, electrode labeling, and anatomical targeting. The software is written in MATLAB, core image processing is performed using the Statistical Parametric Mapping toolbox, and standalone executable binaries are available for Windows, Mac, and Linux platforms. LeGUI was tested and validated on 51 datasets from two universities. The total user and computational time required to process a single dataset was approximately 1 h. Automatic electrode detection correctly identified 4362 of 4695 surface and depth electrodes with only 71 false positives. Anatomical targeting was verified by comparing electrode locations from LeGUI to locations that were assigned by an experienced neuroanatomist. LeGUI showed a 94% match with the 482 neuroanatomist-assigned locations. LeGUI combines all the features needed for fast and accurate anatomical localization of intracranial electrodes into a single interface, making it a valuable tool for intracranial electrophysiology research.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Mulugeta Markos ◽  
Abel Saka ◽  
Leta Tesfaye Jule ◽  
N. Nagaprasad ◽  
Krishnaraj Ramaswamy

Vertical electrical sounding and magnetic methods were carried out to assess groundwater potential in Adilo catchment, Kembata Tembaro Zone, South Nations, Nationalities and Peoples Regional Government, Main Ethiopian Rift. The data were acquired from eight VES points using Schlumberger electrode arrays with maximum half current electrode spacing ( AB / 2 = 500 ) and 253 magnetic data points were analyzed. The qualitative analysis of VES data was accomplished by using curves, apparent resistivity, and pseudodepths, and the quantitative interpretations of the VES data were constructed by the VES data using IPI-Res3, IPI2Win, and surfer software and constructing geoelectric section along with profiles and lithological information from the borehole and Geosoft interpretation was used for magnetic data. The VES results of the data revealed five geoelectric layers which differ in degree of fracturing, weathering, and formation. The upward continued magnetic field map anomaly to 560 m illustrated northwestern to the southwest; areas have a low magnetic anomaly. Examining the potential aquifer of profile one’s geoelectric section, the horizons of layer four were better potential aquifers as the highly fractured and weathered ignimbrite zone of layer five of VES13 was 219 m deeper than the depths of the other VES points, and along with profile two geoelectric sections, the horizon of layer four VES23 layer five has the lowest resistivity with large thickness at a depth of 253 m. Thus, the low resistivity and the large thickness of these formations are an indication of the high yield of groundwater potential in the study area.


Sign in / Sign up

Export Citation Format

Share Document