scholarly journals In Vitro Antimicrobial Activities of 6-Substituted-3(2H)- pyridazinone-2-acetyl-2- (substituted/nonsubstitutedbenzal/ acetophenone) Hydrazone Derivatives

2018 ◽  
Vol 26 (2) ◽  
pp. 231-241
Author(s):  
Gul Bayram Abiha ◽  
Leyla Bahar ◽  
Semra Utku

Abstract Aim: In vitro antibacterial activity of 6-substituted-3(2H)-pyridazinone-2-acetyl-2-(substituted/nonsubstitutedbenzal/ acetophenone) hydrazone derivatives were tested in common species causing hospital-acquired infections. Material and Method: Antimicrobial activities of the compounds were performed by determining minimum inhibitory concentration (MIC) value against four Gram-positive, five Gram-negative and four Candida species fungi. Modified serial microdilution method was carried out. Reference strains of American Type Culture Collection (ATCC) were used. Results: In general, eleven compounds exhibited considerable activity. Comparatively, compound 3 exhibited strong activity against Enterobacter hormaechei and 5, 11 were the most active against Acinetobacter baumannii at 31.25 μg/mL. Compounds 1,2,3,4,8 and 10 were found to be as active as positive control ampicillin trihidrate against Stenotrophomonas maltophilia. On the other hand, compounds 1,2,3,4,7,8,9,10 and 11 showed strong antifungal activitiy as much as fluconazole against Candida tropicalis. Compound 1 was mostly active against Candida albicans, Candida glabrata, Candida parapsilosis and Candida tropicalis. It was also revealed that the antifungal activity of compounds 1, 6, 7, 8 and 9 were higher than the others. Compound 1 and 8 exhibited the best activity against Candida glabrata and Candida parapsilosis respectively. Conclusions: All tested compounds showed better activity against Gram-negative bacteria and yeast than Gram-positive bacteria. These compounds may be considered as alternative antimicrobial agents in the treatment of multiple drug resistant Gram-negative, Gram-positive bacteria and fungal pathogens. Especially, we suggested that Compound 1 and 8 might be a promising candidate of new antifungal agents

2004 ◽  
Vol 48 (8) ◽  
pp. 2831-2837 ◽  
Author(s):  
Mizuyo Kurazono ◽  
Takashi Ida ◽  
Keiko Yamada ◽  
Yoko Hirai ◽  
Takahisa Maruyama ◽  
...  

ABSTRACT ME1036, formerly CP5609, is a novel parenteral carbapenem with a 7-acylated imidazo[5,1-b]thiazole-2-yl group directly attached to the carbapenem moiety of the C-2 position. The present study evaluated the in vitro activities of ME1036 against clinical isolates of gram-positive and gram-negative bacteria. ME1036 displayed broad activity against aerobic gram-positive and gram-negative bacteria. Unlike other marketed β-lactam antibiotics, ME1036 maintained excellent activity against multiple-drug-resistant gram-positive bacteria, such as methicillin-resistant staphylococci and penicillin-resistant Streptococcus pneumoniae (PRSP). The MICs of this compound at which 90% of isolates were inhibited were 2 μg/ml for methicillin-resistant Staphylococcus aureus (MRSA), 2 μg/ml for methicillin-resistant coagulase-negative staphylococci, and 0.031 μg/ml for PRSP. In time-kill studies with six strains of MRSA, ME1036 at four times the MIC caused a time-dependent decrease in the numbers of viable MRSA cells. The activity of ME1036 against MRSA is related to its high affinity for penicillin-binding protein 2a, for which the 50% inhibitory concentration of ME1036 was approximately 300-fold lower than that of imipenem. In conclusion, ME1036 demonstrated a broad antibacterial spectrum and high levels of activity in vitro against staphylococci, including β-lactam-resistant strains.


2009 ◽  
Vol 6 (s1) ◽  
pp. S342-S346 ◽  
Author(s):  
Y. S. Chhonker ◽  
B. Veenu ◽  
S. R. Hasim ◽  
Niranjan Kaushik ◽  
Devendra Kumar ◽  
...  

Some new 2- phenyl benzimidazole derivatives were synthesised by cyclocondensation with appropriate reagents. The compounds synthesised were identified by1H NMR, FAB Mass and FT-IR spectroscopic techniques. All compounds studied in this work were screened for theirin vitroantimicrobial activities against the standard strains:Staphylococcus aureusATCC - 25923, ATCC - 441 andBacillus subtilisATCC- 6633 as gram positive,Escherichia coliATCC - 11775 andPseudomonas aeruginosaATCC 10145 as gram negative bacteria. Some of the compounds inhibited the growth of gram-positive bacteria (B. subtilisandS. aureus) at MIC values between 25 and 200 mg/mL. Some of the compounds exhibit antimicrobial activity against gram negative bacteria (E. coliandP. Aeruginosa) MIC values between 25 and 200 mg/mL.


1992 ◽  
Vol 4 (2) ◽  
pp. 179-183 ◽  
Author(s):  
J.B. McClintock ◽  
J.J. Gauthier

Methanol-toluene extracts of 17 common Antarctic marine sponges collected from shallow waters in McMurdo Sound in October–December 1989 were tested for suppression of growth of bacteria (gram-positive and negative), yeasts and fungi. Weak to moderate levels of antimicrobial activity occurred in all sponges. Antimicrobial activity was more common when gram-negative bacteria were exposed to sponge extracts; 47% of the sponge extracts caused growth inhibition in one or more gram-positive bacteria, while 100% of the extracts caused growth inhibition in gram-negative bacteria. Particularly strong activity was observed against two species of gram-positive bacteria exposed to extracts of the sponge Latrunculia apicalis and against one strain of gram-negative bacterium exposed to extracts of the sponge Haliclona sp. Antimicrobial responses against yeasts and fungi were generally non-existent or weak, with the exception of the yeast Candida tropicalis, which was strongly inhibited by extracts of the sponges Homaxonella balfourensis, Dendrilla membranosa, Kirkpatrickia variolosa, Gellius benedeni, Cinachyra antarctica and Scolymastia joubinia. Antimicrobial activity in these polar sponges is widespread but generally weaker than that found in temperate and tropical sponges.


2020 ◽  
Vol 16 (8) ◽  
pp. 1112-1123
Author(s):  
Othman Hamed ◽  
Oswa Fares ◽  
Shaima Taleeb ◽  
Ghaleb Adwan ◽  
Haythem Saadeh ◽  
...  

Background: Curcumin is a safe, versatile natural product with unlimited number of biological activities and a precursor for various heterocyclic compounds. Objective: The present study was aimed to the development of a curcumin based antimicrobial reagent with high potency against gram-positive and gram-negative bacteria. Methods: Herein we report a simple and convenient one step method for synthesizing a series of 1,4-benzodiazepines via condensation cyclization reaction between curcumin and various 1,2- phenylenediamine in refluxed ethanol. Results: A series of new 1,4-benzodiazepins were synthesized and their structures were supported by FT-IR, 1H NMR, 13C NMR, and mass spectral analysis. Synthesized 1,4-benzodiazepins were evaluated for their in vitro antimicrobial activity against gram positive (S. aureus and S. epidermidis) and gram negative (E. coli and P. aeruginosa) bacteria. They exhibited low to high potency against the tested organisms. In particular, dichlorinated 1,4-benzodiazepine 9 exhibited a remarkable potency against the gram-positive bacteria S. aureus (MIC: 3.125 μg mL-1, MBC: 12 μg mL-1). It showed a higher potency than most of the tested reference drugs. Compound 9 showed the medium activity against E. coli. Genotoxic study revealed that, benzodiazepines 9 attacked the DNA of E. coli strains and damaged it. The potency of compound 9, could be attributed to the multiple chlorine atoms present on the aromatic ring. Conclusion: Some of the synthesized curcumin based benzodiazepines showed excellent potency against gram positive bacteria. These benzodiazepines could be a great candidate as a future antimicrobial agent.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2787
Author(s):  
Lauren Kovanda ◽  
Wen Zhang ◽  
Xiaohong Wei ◽  
Jia Luo ◽  
Xixi Wu ◽  
...  

The authors wish to make the following corrections to this paper published in Molecules [...]


2006 ◽  
Vol 50 (6) ◽  
pp. 2261-2264 ◽  
Author(s):  
Hee-Soo Park ◽  
Hyun-Joo Kim ◽  
Min-Jung Seol ◽  
Dong-Rack Choi ◽  
Eung-Chil Choi ◽  
...  

ABSTRACT DW-224a showed the most potent in vitro activity among the quinolone compounds tested against clinical isolates of gram-positive bacteria. Against gram-negative bacteria, DW-224a was slightly less active than the other fluoroquinolones. The in vivo activities of DW-224a against gram-positive bacteria were more potent than those of other quinolones.


2015 ◽  
Vol 25 (2-3) ◽  
pp. 79-93 ◽  
Author(s):  
Joseph W. Lengeler

<b><i>Past:</i></b> The title ‘PTS 50 or The PTS after 50 years' relies on the first description in 1964 of the phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system (PTS) by Kundig, Gosh and Roseman [Proc Natl Acad Sci USA 1964;52:1067-1074]. The system comprised proteins named Enzyme I, HPr and Enzymes II, as part of a novel PTS for carbohydrates in Gram-negative and Gram-positive bacteria, whose ‘biological significance remained unclear'. In contrast, studies which would eventually lead to the discovery of the central role of the PTS in bacterial metabolism had been published since before 1942. They are primarily linked to names like Epps and Gale, J. Monod, Cohn and Horibata, and B. Magasanik, and to phenomena like ‘glucose effects', ‘diauxie', ‘catabolite repression' and carbohydrate transport. <b><i>Present:</i></b> The pioneering work from Roseman's group initiated a flood of publications. The extraordinary progress from 1964 to this day in the qualitative and in vitro description of the genes and enzymes of the PTS, and of its multiple roles in global cellular control through ‘inducer exclusion', gene induction and ‘catabolite repression', in cellular growth, in cell differentiation and in chemotaxis, as well as the differences of its functions between Gram-positive and Gram-negative bacteria, was one theme of the meeting and will not be treated in detail here. <b><i>Future:</i></b> At the 1988 Paris meeting entitled ‘The PTS after 25 years', Saul Roseman predicted that ‘we must describe these interactions [of the PTS components] in a quantitative way [under] in vivo conditions'. I will present some results obtained by our group during recent years on the old phenomenon of diauxie by means of very fast and quantitative tests, measured in vivo, and obtained from cultures of isogenic mutant strains growing under chemostat conditions. The results begin to hint at the problems relating to future PTS research, but also to the ‘true science' of Roseman.


1962 ◽  
Vol 8 (5) ◽  
pp. 621-628 ◽  
Author(s):  
W. A. Taber ◽  
B. B. Wiley

The antimicrobial activities of a branched, monoalkyl benzene sulphonate complex (ABS), the active component of a commercial liquid household detergent, and of the detergent have been investigated. Cultures of dermatophytes, Candida albicans, saprophytic phycomycetes, ascomycetes, fungi imperfecti, Gram-positive and Gram-negative bacteria were tested. Only the Fusarium species and the Gram-negative bacteria were not inhibited by a concentration of 0.1 ml of the detergent/50 ml medium. Microgram quantities of ABS inhibited the Gram-positive bacteria and the fungi except Fusarium spp. ABS was lethal in microgram quantities, the effect being detectable within 30 minutes. Inhibition of exogenous respiration of glucose by C. albicans began upon contact and was complete within 50 minutes. A linear and biodegradable ABS was more active than the branched form against C. albicans.


Sign in / Sign up

Export Citation Format

Share Document