scholarly journals First report about the trapping activity of Stropharia rugosoannulata acanthocytes for Northern Root Knot Nematode

2013 ◽  
Vol 50 (2) ◽  
pp. 127-131 ◽  
Author(s):  
M. Zouhar ◽  
O. Douda ◽  
J. Nováková ◽  
E. Doudová ◽  
J. Mazáková ◽  
...  

AbstractThis study summarises the results of in vitro screening of the nematophagous activity of Stropharia rugosoannulata and Arthrobotrys oligospora. The tests were conducted with Meloidogyne hapla plant parasitic nematode juveniles placed into Petri dishes containing cultures of the tested fungal species. Immobilisation of the nematodes was observed after 4 and 24 hours. Both species of fungi showed nematophagous activity, however it was much stronger and faster in the case of S. rugosoannulata.

Author(s):  
Anil Baniya ◽  
Soumi Joseph ◽  
Larry Duncan ◽  
William Crow ◽  
Tesfamariam Mengistu

AbstractSex determination is a key developmental event in all organisms. The pathway that regulates sexual fate has been well characterized at the molecular level in the model free-living nematode Caenorhabditis elegans. This study aims to gain a preliminary understanding of sex-determining pathways in a plant-parasitic nematode Meloidogyne incognita, and the extent to which the roles of the sex determination genes are conserved in a hermaphrodite species, C. elegans, and plant-parasitic nematode species, M. incognita. In this study, we targeted two sex-determining orthologues, sdc-1 and tra-1 from M. incognita using RNA interference (RNAi). RNAi was performed by soaking second-stage juveniles of M. incognita in a solution containing dsRNA of either Mi-tra-1or Mi-sdc-1 or both. To determine the effect of RNAi of the target genes, the juveniles treated with the dsRNA were inoculated onto a susceptible cultivar of cowpea grown in a nutrient pouch at 28 °C for 5 weeks. The development of the nematodes was analyzed at different time points during the growth period and compared to untreated controls. Our results showed that neither Mi-sdc-1 nor Mi-tra-1 have a significant role in regulating sexual fate in M. incognita. However, the silencing of Mi-sdc-1 significantly delayed maturity to adult females but did not affect egg production in mature females. In contrast, the downregulation of Mi-tra-1 transcript resulted in a significant reduction in egg production in both single and combinatorial RNAi-treated nematodes. Our results indicate that M. incognita may have adopted a divergent function for Mi-sdc-1 and Mi-tra-1distinct from Caenorhabditis spp. However, Mi-tra-1 might have an essential role in female fecundity in M. incognita and is a promising dsRNA target for root-knot nematode (RKN) management using host-delivered RNAi.


2020 ◽  
Vol 96 (7) ◽  
Author(s):  
Anne-Sophie Masson ◽  
Hai Ho Bich ◽  
Marie Simonin ◽  
Hue Nguyen Thi ◽  
Pierre Czernic ◽  
...  

ABSTRACT Meloidogyne graminicola, also known as the rice root-knot nematode, is one of the most damaging plant-parasitic nematode, especially on rice. This obligate soilborne parasite induces the formation of galls that disturb the root morphology and physiology. Its impact on the root microbiome is still not well described. Here, we conducted a survey in Northern Vietnam where we collected infected (with galls) and non-infected root tips from the same plants in three naturally infested fields. Using a metabarcoding approach, we discovered that M. graminicola infection caused modifications of the root bacterial community composition and network structure. Interestingly, we observed in infected roots a higher diversity and species richness (+24% observed ESVs) as well as a denser and more complex co-occurrence network (+44% nodes and +136% links). We identified enriched taxa that include several hubs, which could serve as potential indicators or biocontrol agents of the nematode infection. Moreover, the community of infected roots is more specific suggesting changes in the functional capabilities to survive in the gall environment. We thus describe the signature of the gall microbiome (the ‘gallobiome’) with shifting abundances and enrichments that lead to a strong restructuration of the root microbiome.


1995 ◽  
Vol 28 (6) ◽  
pp. 566-570 ◽  
Author(s):  
Philippe Castagnone-Sereno ◽  
Guadalupe Esparrago ◽  
Pierre Abad ◽  
Fred�ric Leroy ◽  
Michel Bongiovanni

2019 ◽  
Vol 18 (4) ◽  
pp. 62-69
Author(s):  
Phong V. Nguyen

Effectors have been identified to play a very important role in the parasitism of plant-parasitic nematode. To cope with this type of pathogen, many approaches of silencing genes encoding for effectors have been studied and promise to be an effective tool to create plant varieties resistant to plant-parasitic nematodes. In this study, the Minc16281 gene encoding a pioneer effector with unknown function was determined and cloned from a Meloidogyne incognita population isolated from soybean field (ID: MH315945.1). The nucleotide sequence of this gene showed 97% identity to its homolog in GenBank (ID: JK287445.1) used as the control strain in our research. To generate host-induced gene silencing constructs which can potentially silence the expression of Minc16281 gene, two artificial microRNAs were synthesized based on the miR319a structure of Arabidopsis thaliana and inserted into an expression vector in soybean. These microRNAs can be introduced into soybean to investigate the function of Minc16281 on parasitism of root-knot nematode.


2019 ◽  
Vol 76 (3) ◽  
pp. 430
Author(s):  
Shrawan Singh ◽  
Pritam Kalia ◽  
Manisha Mangal ◽  
Hadassah Chinthagunti ◽  
Chetna Chug ◽  
...  

Plant Disease ◽  
2020 ◽  
Vol 104 (8) ◽  
pp. 2295
Author(s):  
Wenhao Li ◽  
Huixia Li ◽  
Yonggang Liu ◽  
Chunhui Ni ◽  
XueFen Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document