Membrane extraction of 1-phenylethanol from fermentation solution

2011 ◽  
Vol 65 (2) ◽  
Author(s):  
Mário Mihaľ ◽  
Jozef Markoš ◽  
Vladimír Štefuca

Abstract1-Phenylethanol can be produced by biotransformation of acetophenone using microorganisms. The next step is the separation of biomass from the fermentation solution (e.g. using microfiltration) and then the separation of the product. Membrane extraction was studied in the presented work for this purpose. Equilibria of acetophenone and 1-phenylethanol in the equilibrium system solute-organic solvent-water were investigated for three different organic solvents (heptane, toluene, ethyl acetate). On the basis of this investigation, extraction kinetics of both solutes from the model aqueous solution to the heptane organic phase, using a hollow fiber membrane module, were studied. To simulate the extraction kinetics, mathematical model of an experimental parallel flow hollow fiber contactor is presented and verified using experimental values with good agreement. Extraction kinetics for the investigated organic solvents were simulated and compared using the verified mathematical model and the chosen membrane extraction parameters.

ASAIO Journal ◽  
1994 ◽  
Vol 40 (4) ◽  
pp. 990-996 ◽  
Author(s):  
Steven N. Vaslef ◽  
Lyle F. Mockros ◽  
Robert W. Anderson ◽  
Ronald J. Leonard

2015 ◽  
Vol 22 (4) ◽  
pp. 565-575 ◽  
Author(s):  
Karina Snochowska ◽  
Michał Tylman ◽  
Władysław Kamiński

Abstract Recovery of alcohols from diluted aqueous solutions is highly energy-intensive. In order to reduce the costs of concentration of alcohols, membrane processes (including membrane extraction) are used. This paper reports the results of ethanol concentration from diluted aqueous solutions using a hollow fiber membrane contactor with ionic liquid. The studies were performed using a contactor with microporous hollow fiber membranes. The membrane creates a barrier between the feed and extracting solvent, also providing a large mass transfer area. In the process, selected ionic liquid presenting different selectivity towards ethanol was used as extractant. The experiments were performed with feed concentrations of ethanol ranging from 1 to 5 wt.% and various feed flow rates ranging from 1 to 8 dm3/h.


Sign in / Sign up

Export Citation Format

Share Document