Isolation and chromosomal localization of new MITE-like sequences from Secale

Biologia ◽  
2012 ◽  
Vol 67 (1) ◽  
Author(s):  
Lijun Hu ◽  
Zixian Zeng ◽  
Cheng Liu ◽  
Guangrong Li ◽  
Zujun Yang

AbstractA species-specific DNA sequence (marker) that can detect the presence of Secale cereale chromatin in common wheat background was developed by using wheat microsatellite primer Xgwm614. One rye-specific DNA amplified fragment of 416bp (pSa614416) was obtained from Secale africanum and a wheat — S. africanum amphiploid. The primer Xgwm614 also gave rise to specific bands in all Chinese Spring-Imperial rye addition lines 1R to 7R. Sequence analysis revealed that pSa614416 was strongly homologous to a miniature inverted transposable element (MITE) stowaway-like element. Results of fluorescence in situ hybridization showed that the signal of pSa614416 was distributed along all S. cereale. cv Jingzhou chromosomes, but the signal strengths were unbalanced on the seven rye genome chromosomes. This repetitive element may be useful as a molecular marker for the introgression of rye germplasm into the wheat genome.

2008 ◽  
Vol 74 (12) ◽  
pp. 3895-3898 ◽  
Author(s):  
Tara L. Harmer ◽  
Randi D. Rotjan ◽  
Andrea D. Nussbaumer ◽  
Monika Bright ◽  
Andrew W. Ng ◽  
...  

ABSTRACT Recent evidence suggests that deep-sea vestimentiferan tube worms acquire their endosymbiotic bacteria from the environment each generation; thus, free-living symbionts should exist. Here, free-living tube worm symbiont phylotypes were detected in vent seawater and in biofilms at multiple deep-sea vent habitats by PCR amplification, DNA sequence analysis, and fluorescence in situ hybridization. These findings support environmental transmission as a means of symbiont acquisition for deep-sea tube worms.


Author(s):  
Barbara Trask ◽  
Susan Allen ◽  
Anne Bergmann ◽  
Mari Christensen ◽  
Anne Fertitta ◽  
...  

Using fluorescence in situ hybridization (FISH), the positions of DNA sequences can be discretely marked with a fluorescent spot. The efficiency of marking DNA sequences of the size cloned in cosmids is 90-95%, and the fluorescent spots produced after FISH are ≈0.3 μm in diameter. Sites of two sequences can be distinguished using two-color FISH. Different reporter molecules, such as biotin or digoxigenin, are incorporated into DNA sequence probes by nick translation. These reporter molecules are labeled after hybridization with different fluorochromes, e.g., FITC and Texas Red. The development of dual band pass filters (Chromatechnology) allows these fluorochromes to be photographed simultaneously without registration shift.


1994 ◽  
Vol 297 (3) ◽  
pp. 441-445 ◽  
Author(s):  
D Hickman ◽  
A Risch ◽  
V Buckle ◽  
N K Spurr ◽  
S J Jeremiah ◽  
...  

Arylamine N-acetyltransferase is encoded at two loci, AAC-1 and AAC-2, on human chromosome 8. The products of the two loci are able to catalyse N-acetylation of arylamine carcinogens, such as benzidine and other xenobiotics. AAC-2 is polymorphic and individuals carrying the slow-acetylator phenotype are more susceptible to benzidine-induced bladder cancer. We have identified yeast artificial chromosome clones encoding AAC-1 and AAC-2 and have used the cloned DNAs as fluorescent probes for in situ hybridization. The hybridization patterns allow assignment of AAC-1 and AAC-2 to chromosome 8p21.3-23.1, a region in which deletions have been associated with bladder cancer [Knowles, Shaw and Proctor (1993) Oncogene 8, 1357-1364].


1986 ◽  
Vol 42 (3) ◽  
pp. 129-132 ◽  
Author(s):  
M. Yerle ◽  
J. Gellin ◽  
G. Echard ◽  
F. Lefevre ◽  
M. Gillois

Genome ◽  
1996 ◽  
Vol 39 (3) ◽  
pp. 535-542 ◽  
Author(s):  
Concha Linares ◽  
Juan González ◽  
Esther Ferrer ◽  
Araceli Fominaya

A physical map of the locations of the 5S rDNA genes and their relative positions with respect to 18S–5.8S–26S rDNA genes and a C genome specific repetitive DNA sequence was produced for the chromosomes of diploid, tetraploid, and hexaploid oat species using in situ hybridization. The A genome diploid species showed two pairs of rDNA loci and two pairs of 5S loci located on both arms of one pair of satellited chromosomes. The C genome diploid species showed two major pairs and one minor pair of rDNA loci. One pair of subtelocentric chromosomes carried rDNA and 5S loci physically separated on the long arm. The tetraploid species (AACC genomes) arising from these diploid ancestors showed two pairs of rDNA loci and three pairs of 5S loci. Two pairs of rDNA loci and 2 pairs of 5S loci were arranged as in the A genome diploid species. The third pair of 5S loci was located on one pair of A–C translocated chromosomes using simultaneous in situ hybridization with 5S rDNA genes and a C genome specific repetitive DNA sequence. The hexaploid species (AACCDD genomes) showed three pairs of rDNA loci and six pairs of 5S loci. One pair of 5S loci was located on each of two pairs of C–A/D translocated chromosomes. Comparative studies of the physical arrangement of rDNA and 5S loci in polyploid oats and the putative A and C genome progenitor species suggests that A genome diploid species could be the donor of both A and D genomes of polyploid oats. Key words : oats, 5S rDNA genes, 18S–5.8S–26S rDNA genes, C genome specific repetitive DNA sequence, in situ hybridization, genome evolution.


Sign in / Sign up

Export Citation Format

Share Document