A critical oscillation constant as a variable of time scales for half-linear dynamic equations

2010 ◽  
Vol 60 (2) ◽  
Author(s):  
Pavel Řehák

AbstractWe present criteria of Hille-Nehari type for the half-linear dynamic equation (r(t)Φ(y Δ))Δ+p(t)Φ(y σ) = 0 on time scales. As a particular important case we get that there is a a (sharp) critical constant which may be different from what is known from the continuous case, and its value depends on the graininess of a time scale and on the coefficient r. As applications we state criteria for strong (non)oscillation, examine generalized Euler type equations, and establish criteria of Kneser type. Examples from q-calculus, a Hardy type inequality with weights, and further possibilities for study are presented as well. Our results unify and extend many existing results from special cases, and are new even in the well-studied discrete case.

2012 ◽  
Vol 2012 ◽  
pp. 1-23 ◽  
Author(s):  
Samir H. Saker

We will prove some new dynamic inequalities of Opial's type on time scales. The results not only extend some results in the literature but also improve some of them. Some continuous and discrete inequalities are derived from the main results as special cases. The results will be applied on second-order half-linear dynamic equations on time scales to prove several results related to the spacing between consecutive zeros of solutions and the spacing between zeros of a solution and/or its derivative. The results also yield conditions for disfocality of these equations.


2018 ◽  
Vol 51 (1) ◽  
pp. 198-210 ◽  
Author(s):  
Douglas R. Anderson ◽  
Masakazu Onitsuka

Abstract We establish theHyers-Ulam stability (HUS) of certain first-order linear constant coefficient dynamic equations on time scales, which include the continuous (step size zero) and the discrete (step size constant and nonzero) dynamic equations as important special cases. In particular, for certain parameter values in relation to the graininess of the time scale, we find the minimum HUS constants. A few nontrivial examples are provided. Moreover, an application to a perturbed linear dynamic equation is also included.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
S. H. Saker ◽  
R. R. Mahmoud ◽  
K. R. Abdo

AbstractIn this paper, we establish some necessary and sufficient conditions for the validity of a generalized dynamic Hardy-type inequality with higher-order derivatives with two different weighted functions on time scales. The corresponding continuous and discrete cases are captured when $\mathbb{T=R}$ T = R and $\mathbb{T=N}$ T = N , respectively. Finally, some applications to our main result are added to conclude some continuous results known in the literature and some other discrete results which are essentially new.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Samir H. Saker

We will prove some new dynamic inequalities of Opial's type on time scales. The results not only extend some results in the literature but also improve some of them. Some continuous and discrete inequalities are derived from the main results as special cases. The results can be applied on the study of distribution of generalized zeros of half-linear dynamic equations on time scales.


1998 ◽  
Vol 58 (2) ◽  
pp. 213-221 ◽  
Author(s):  
P. Drábek ◽  
A. Kufner ◽  
V. Mustonen

Using the compactness of an imbedding for weighted Sobolev spaces (that is, a Hardy-type inequality), it is shown how the assumption of monotonicity can be weakened still guaranteeing the pseudo-monotonicity of certain nonlinear degenerated or singular elliptic differential operators. The result extends analogous assertions for elliptic operators.


2020 ◽  
Vol 6 (2) ◽  
pp. 198-209
Author(s):  
Mohamed Laghzal ◽  
Abdelouahed El Khalil ◽  
My Driss Morchid Alaoui ◽  
Abdelfattah Touzani

AbstractThis paper is devoted to the study of the homogeneous Dirichlet problem for a singular nonlinear equation which involves the p(·)-biharmonic operator and a Hardy-type term that depend on the solution and with a parameter λ. By using a variational approach and min-max argument based on Ljusternik-Schnirelmann theory on C1-manifolds [13], we prove that the considered problem admits at least one nondecreasing sequence of positive eigencurves with a characterization of the principal curve μ1(λ) and also show that, the smallest curve μ1(λ) is positive for all 0 ≤ λ < CH, with CH is the optimal constant of Hardy type inequality.


Sign in / Sign up

Export Citation Format

Share Document