scholarly journals Fractional wave equations with attenuation

Author(s):  
Peter Straka ◽  
Mark Meerschaert ◽  
Robert McGough ◽  
Yuzhen Zhou

AbstractFractional wave equations with attenuation have been proposed by Caputo [5], Szabo [28], Chen and Holm [7], and Kelly et al. [11]. These equations capture the power-law attenuation with frequency observed in many experimental settings when sound waves travel through inhomogeneous media. In particular, these models are useful for medical ultrasound. This paper develops stochastic solutions and weak solutions to the power law wave equation of Kelly et al. [11].

2007 ◽  
Vol 60 (4) ◽  
pp. 149-171 ◽  
Author(s):  
L. M. B. C. Campos

The starting point in the formulation of most acoustic problems is the acoustic wave equation. Those most widely used, the classical and convected wave equations, have significant restrictions, i.e., apply only to linear, nondissipative sound waves in a steady homogeneous medium at rest or in uniform motion. There are many practical situations violating these severe restrictions. In the present paper 36 distinct forms of the acoustic wave equation are derived (and numbered W1–W36), extending the classical and convected wave equations to include cases of propagation in inhomogeneous and∕or unsteady media, either at rest or in potential or vortical flows. The cases considered include: (i) linear waves, i.e., with small gradients, which imply small amplitudes, and (ii) nonlinear waves, i.e., with steep gradients, which include “ripples” (large gradients with small amplitude) or large amplitude waves. Only nondissipative waves are considered, i.e., excluding and dissipation by shear and bulk viscosity and thermal conduction. Consideration is given to propagation in homogeneous media and inhomogeneous media, which are homentropic (i.e., have uniform entropy) or isentropic (i.e., entropy is conserved along streamlines), excluding nonisentropic (e.g., dissipative); unsteady media are also considered. The medium may be at rest, in uniform motion, or it may be a nonuniform and∕or unsteady mean flow, including: (i) potential mean flow, of low Mach number (i.e., incompressible mean state) or of high-speed (i.e., inhomogeneous compressible mean flow); (ii) quasi-one-dimensional propagation in ducts of varying cross section, including horns without mean flow and nozzles with low or high Mach number mean flow; or (iii) unidirectional sheared mean flow, in the plane, in space or axisymmetric. Other types of vortical mean flows, e.g., axisymmetric swirling mean flow, possibly combined with shear, are not considered in the present paper (and are left to follow-up work together with dissipative and other cases). The 36 wave equations are derived either by elimination among the general equations of fluid mechanics or from an acoustic variational principle, with both methods being used in a number of cases as cross-checks. Although the 36 forms of the acoustic wave equation do not cover all possible combinations of the three effects of (i) nonlinearity in (ii) inhomogeneous and unsteady and (iii) nonuniformly moving media, they do include each effect in isolation and a variety of combinations of multiple effects. Altogether they provide a useful variety of extensions of the classical (and convected) wave equations, which are used widely in the literature, in spite of being restricted to linear, nondissipative sound waves in an homogeneous steady medium at rest (or in uniform motion). There are many applications for which the classical and convected wave equations are poor approximations, and more general forms of the acoustic wave equation provide more satisfactory models. Numerous examples of these applications are given at the end of each written section. There are 240 references cited in this review article.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 874
Author(s):  
Francesco Iafrate ◽  
Enzo Orsingher

In this paper we study the time-fractional wave equation of order 1 < ν < 2 and give a probabilistic interpretation of its solution. In the case 0 < ν < 1 , d = 1 , the solution can be interpreted as a time-changed Brownian motion, while for 1 < ν < 2 it coincides with the density of a symmetric stable process of order 2 / ν . We give here an interpretation of the fractional wave equation for d > 1 in terms of laws of stable d−dimensional processes. We give a hint at the case of a fractional wave equation for ν > 2 and also at space-time fractional wave equations.


Author(s):  
N.H. Sweilam ◽  
T.A. Assiri

In this paper, the space fractional wave equation (SFWE) is numerically studied, where the fractional derivative is defined in the sense of Caputo. An explicit finite difference approximation (EFDA) for SFWE is presented. The stability and the error analysis of the EFDA are discussed. To demonstrate the effectiveness of the approximated method, some test examples are presented.   


2020 ◽  
Author(s):  
Vladimir P. Dzyuba ◽  
Roman Romashko

An analytical method based on the Green\'s function for describing the electromagnetic field, scalar-vector and phase characteristics of the acoustic field in a stationary isotropic and arbitrarily inhomogeneous medium is proposed. The method uses, in the case of an electromagnetic field, the wave equation proposed by the author for the electric vector of the electromagnetic field, which is valid for dielectric and magnetic inhomogeneous media with conductivity. In the case of an acoustic field, the author uses the wave equation proposed by the author for the particle velocity vector and the well-known equation for acoustic pressure in an inhomogeneous stationary medium. The approach used allows one to reduce the problem of solving differential wave equations in an arbitrarily inhomogeneous medium to the problem of taking an integral.


2020 ◽  
Vol 14 (4) ◽  
pp. 523-534
Author(s):  
Faiqul Fikri ◽  
Eddy Djauhari ◽  
Endang Rusyaman

Non-linear differential equations with fractional derivative order are mathematical models that are widely used in modeling physical phenomena, one of the applications of these models is non-linear fractional wave equations. Many methods for solving non-linear fractional partial differential equations, one of which is the New Version of Optimal Homotopy Asymptotic Method which is developed by Liaqat Ali in 2016. The author will use this method to solve non-linear fractional wave equations predetermined, so that the convergence of function of the approximation solution non-linear fractional wave equation can be observed and it can be observed that the function of approximation solution of non-linear fractional wave equation solution using the New Version of Optimal Homotopy Asymptotic Method is simple and has a value error using Mean Absolute Percentage Error which is categorized very well


Author(s):  
Jia Wei He ◽  
Yong Zhou

In this paper, we concern with a backward problem for a nonlinear time fractional wave equation in a bounded domain. By applying the properties of Mittag-Leffler functions and the method of eigenvalue expansion, we establish some results about the existence and uniqueness of the mild solutions of the proposed problem based on the compact technique. Due to the ill-posedness of backward problem in the sense of Hadamard, a general filter regularization method is utilized to approximate the solution and further we prove the convergence rate for the regularized solutions.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1095
Author(s):  
Jorge E. Macías-Díaz

In this work, we investigate numerically a one-dimensional wave equation in generalized form. The system considers the presence of constant damping and functional anomalous diffusion of the Riesz type. Reaction terms are also considered, in such way that the mathematical model can be presented in variational form when damping is not present. As opposed to previous efforts available in the literature, the reaction terms are not only functions of the solution. Instead, we consider the presence of smooth functions that depend on fractional derivatives of the solution function. Using a finite-difference approach, we propose a numerical scheme to approximate the solutions of the fractional wave equation. Along with this integrator, we propose discrete forms of the local and the total energy operators. In a first stage, we show rigorously that the energy properties of the continuous system are mimicked by our discrete methodology. In particular, we prove that the discrete system is dissipative (respectively, conservative) when damping is present (respectively, absent), in agreement with the continuous model. The theoretical numerical analysis of this system is more complicated in light of the presence of the functional form of the anomalous diffusion. To solve this problem, some novel technical lemmas are proved and used to establish the stability and the quadratic convergence of the scheme. Finally, we provide some computer simulations to show the capability of the scheme to conserve/dissipate the energy. Various fractional problems with functional forms of the anomalous diffusion of the solution are considered to that effect.


Sign in / Sign up

Export Citation Format

Share Document