scholarly journals Classification of mountain soils in a subalpine zone – a case study from the Bieszczady Mountains (SE Poland)

2019 ◽  
Vol 70 (2) ◽  
pp. 170-177
Author(s):  
Łukasz Musielok ◽  
Marek Drewnik ◽  
Wojciech Szymański ◽  
Mateusz Stolarczyk

Abstract The aim of the study was to test the suitability of the 6th edition of Polish Soil Classification (SGP6) in reflecting the typical features of subalpine Bieszczady Mts. soils in comparison with the 5th edition of Polish Soil Classification (SGP5) and the newest version of World Reference Base for Soil Resources (WRB). Five soil profiles located in differentiated in terms of the parent material, topography and vegetation conditions of the natural environment were investigated. On the basis of described morphology and determined properties soils were classified according to different soil classifications. All soils under study were featured by presence of thick A horizons and high content of soil organic carbon accumulated even very deep in the profiles. Some of the mineral topsoil layers were classified as umbric/umbrik horizons. Moreover cambic/kambik horizons were present and in some cases also weak redoximorphic features occurred. The SGP6 enabled to distinguish soils with a thick, organic carbon-rich A horizons as umbrisols, a newly created subtype of grey soils. Furthermore, the soil taxonomic position according to SGP6 was more detailed in relation to the soil trophic status (in case of brown soils) and occurrence of weak redoximorphic features. That was reflected in number of subtypes to which analyzed soils were classified – 4 in SGP6 vs 2 in SGP5.

2019 ◽  
Author(s):  
A.A. Tereshkina ◽  
N.F. Pshenichnikova ◽  
A.N. Bugaets ◽  
O.M. Golodnaya ◽  
S.M. Krasnopeev

В работе приведены предварительные результаты создания цифровой почвенной карты для бассейна р. Правая Соколовка, территории Верхнеуссурийского стационара (ВУС) ФНЦ Биоразнообразия наземной биоты Восточной Азии ДВО РАН 1: 50 000. По природным условиям территория типична для среднегорного пояса, представляет собой характерный низкосреднегорный участок южного СихотэАлиня. Климат района формируется под влиянием восточноазиатского муссона. В качестве топографической основы использована цифровая модель рельефа с пространственным разрешением 30 м (SRTM30), план лесонасаждений Верхнеуссурийского стационара, геологическая карта М 1: 200 000. Основными единицами карты являются почвенные подтипы. Номенклатура почв дана по региональной классификации Г. И. Иванова, выполнена адаптация к современной почвенной классификации Российской Федерации и проведена корреляция с номенклатурой почв Всемирной реферативной базой почвенных ресурсов (WRB). Каждый почвенный ареал включает данные по условиям формирования почв на уровне подтипа. Всего выделено десять подтипов. Показано, что в почвеннорастительном покрове четко выражена вертикальная зональность, представленная двумя почвеннорастительными поясами: горных буротаежных и горноподзолистых почв темнохвойных лесов и поясом горнолесных бурых почв хвойношироколиственных лесов. В поясе темнохвойных лесов в пределах высот 800 1000 м распространены горные ржавоземы грубогумусовые иллювиальногумусированные, составляющие 23,8 от общей площади бассейна. В поясе хвойношироколиственных лесов в основном распространены буроземы (70 от общей площади водосбора). Среди почв пойменных ландшафтов преобладают аллювиальные серогумусовые (дерновые) типичные. На основе информации по генетическим горизонтам создана база данных гидрофизических характеристик почв. По литературным источникам создана база данных физических характеристик почв (гранулометрический состав, глубина, вес, содержание гумуса) по генетическим горизонтам почвенных профилей (45 разрезов). С помощью алгоритмов обработки пространственных данных выполнен анализ численных характеристик морфометрии рельефа (средняя высота, уклон, площадь) почвенных ареалов.The digital soil map (1: 50 000) of the Right Sokolovka River basin the territory of the Upper Ussurian experimental station of the Centre of Biodiversity of the terrestrial biota of East Asia, FEB RAS. The main map units are soil subtypes. The soil nomenclature is given according to the regional classification, the adaptation to the modern soil classification of the Russian Federation was carried out and correlation with the soil nomenclature by the World Reference Base of Soil Resources was made. The calculation and preliminary analysis of the numerical characteristics of the morphometry of the topography of the soil areas has been performed.


2013 ◽  
Vol 46 (6) ◽  
pp. 536-541 ◽  
Author(s):  
Seung-Been Lee ◽  
Hyen-Chung Chun ◽  
Hyun-Jun Cho ◽  
Byung-Keun Hyun ◽  
Kwan-Cheol Song ◽  
...  

Author(s):  
R. G. Gracheva

The first soil classifications dividing soils according to their individual properties and reflecting the resource value of soils were, in fact, substantive classifications. The appearance of soil science that studies soils as special natural bodies changing in space according to natural laws has led to the emergence of genetic soil classifications. The most detailed multilevel Classification of soils of the USSR (1977) is ecological genetic classification based on the relationship between soils and soil formation conditions, where the type of vegetation cover is the top hierarchy level. With the development of soil science, inconsistencies between the genetic classification and the growing volume of knowledge, difficulties in its formalization, and contradictions with the zonal approach have appeared. A paradigm of substantive classification has emerged based on modern measurable morphological and analytical indicators of soils. It is most fully implemented in the World reference base for soil resources (WRB); a compromise option is the substantive- genetic Soil Classification of Russia (2004). In these classifications, for the first time soils with strong human influence (Antrosols and Technosols) are included at a high classification level. The tasks of substantive classifications are the certainty of soil identification; however, discrete classification cells with tight boundaries do not correspond to the continual nature of soils. When using WRB 2014, geobotanical studies receive a certain “freedom” from soils, at the same time, the rigid framework of the parameters of soil properties makes it possible to more accurately identify soil-depended condition of the vegetation cover.


2008 ◽  
Vol 13 (4) ◽  
pp. 378 ◽  
Author(s):  
L. SLÅNBERG ◽  
L. HYLANDER

Classification of soils according to internationally agreed criteria forms a valuable base for scientifi c and political analyses. The objectives of this study were to evaluate two soil classification systems and relate them to agricultural and environmental concerns, principally phosphorus leakage, by classifying three Swedish, arable soils. The Bjärröd soil was classifi ed as a Rupti-Endogleyic Phaeozem according to the World Reference Base for Soil Resources and as a coarse-loamy, mesic Oxiaquic Hapludoll according to the Soil Taxonomy. Bjelkesta was classified as an Orthieutric Gleysol and a fi ne, frigid, Typic Endoaquept, respectively, and Götala as a Haplic Arenosol and a frigid Typic Udipsamment. We evaluated some changes to the classification systems proposed by Nordic scientists and found the classification of Bjärröd misleading and suggest it being classified as a Cambisol/Inceptisol and that information of the characteristically high base saturation in Bjelkesta and the spodic character in Götala being included in their names. This information is useful for decisions regarding agrarian and environmental management of the soils.;


Author(s):  
Ward Chesworth ◽  
Marta Camps Arbestain ◽  
Felipe Macías ◽  
Otto Spaargaren ◽  
Otto Spaargaren ◽  
...  

SOIL ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 163-177
Author(s):  
Andre Carnieletto Dotto ◽  
Jose A. M. Demattê ◽  
Raphael A. Viscarra Rossel ◽  
Rodnei Rizzo

Abstract. Soil classification has traditionally been developed by combining the interpretation of taxonomic rules that are related to soil information with the pedologist's tacit knowledge. Hence, a more quantitative approach is necessary to characterize soils with less subjectivity. The objective of this study was to develop a soil grouping system based on spectral, climate, and terrain variables with the aim of establishing a quantitative way of classifying soils. Spectral data were utilized to obtain information about the soil, and this information was complemented by climate and terrain variables in order to simulate the pedologist knowledge of soil–environment interactions. We used a data set of 2287 soil profiles from five Brazilian regions. The soil classes of World Reference Base (WRB) system were predicted using the three above-mentioned variables, and the results showed that they were able to correctly classify the soils with an overall accuracy of 88 %. To derive the new system, we applied the spectral, climatic, and terrain variables, which – using cluster analysis – defined eight groups; thus, these groups were not generated by the traditional taxonomic method but instead by grouping areas with similar characteristics expressed by the variables indicated. They were denominated as “soil environment groupings” (SEGs). The SEG system facilitated the identification of groups with equivalent characteristics using not only soil but also environmental variables for their distinction. Finally, the conceptual characteristics of the eight SEGs were described. The new system has been designed to incorporate applicable soil data for agricultural management, to require less interference from personal/subjective/empirical knowledge (which is an issue in traditional taxonomic systems), and to provide more reliable automated measurements using sensors.


Land ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 154 ◽  
Author(s):  
Orestis Kairis ◽  
Vassiliki Dimitriou ◽  
Chrysoula Aratzioglou ◽  
Dionisios Gasparatos ◽  
Nicholas Yassoglou ◽  
...  

Two soil mapping methodologies at different scales applied in the same area were compared in order to investigate the potential of their combined use to achieve an integrated and more accurate soil description for sustainable land use management. The two methodologies represent the main types of soil mapping systems used and still applied in soil surveys in Greece. Diomedes Botanical Garden (DBG) (Athens, Greece) was used as a study area because past cartographic data of soil survey were available. The older soil survey data were obtained via the conventional methodology extensively used over time since the beginnings of soil mapping in Greece (1977). The second mapping methodology constitutes the current soil mapping system in Greece recently used for compilation of the national soil map. The obtained cartographic and soil data resulting from the application of the two methodologies were analyzed and compared using appropriate geospatial techniques. Even though the two mapping methodologies have been performed at different mapping scales, using partially different mapping symbols and different soil classification systems, the description of the soils based on the cartographic symbols of the two methodologies presented an agreement of 63.7% while the soil classification by the two taxonomic systems namely Soil Taxonomy and World Reference Base for Soil Resources had an average coincidence of 69.5%.


Geoderma ◽  
2016 ◽  
Vol 263 ◽  
pp. 226-233 ◽  
Author(s):  
Vince Láng ◽  
Márta Fuchs ◽  
Tamás Szegi ◽  
Ádám Csorba ◽  
Erika Michéli

Sign in / Sign up

Export Citation Format

Share Document