scholarly journals A Comparative Analysis of a Detailed and Semi-Detailed Soil Mapping for Sustainable Land Management Using Conventional and Currently Applied Methodologies in Greece

Land ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 154 ◽  
Author(s):  
Orestis Kairis ◽  
Vassiliki Dimitriou ◽  
Chrysoula Aratzioglou ◽  
Dionisios Gasparatos ◽  
Nicholas Yassoglou ◽  
...  

Two soil mapping methodologies at different scales applied in the same area were compared in order to investigate the potential of their combined use to achieve an integrated and more accurate soil description for sustainable land use management. The two methodologies represent the main types of soil mapping systems used and still applied in soil surveys in Greece. Diomedes Botanical Garden (DBG) (Athens, Greece) was used as a study area because past cartographic data of soil survey were available. The older soil survey data were obtained via the conventional methodology extensively used over time since the beginnings of soil mapping in Greece (1977). The second mapping methodology constitutes the current soil mapping system in Greece recently used for compilation of the national soil map. The obtained cartographic and soil data resulting from the application of the two methodologies were analyzed and compared using appropriate geospatial techniques. Even though the two mapping methodologies have been performed at different mapping scales, using partially different mapping symbols and different soil classification systems, the description of the soils based on the cartographic symbols of the two methodologies presented an agreement of 63.7% while the soil classification by the two taxonomic systems namely Soil Taxonomy and World Reference Base for Soil Resources had an average coincidence of 69.5%.

Soil Research ◽  
2013 ◽  
Vol 51 (3) ◽  
pp. 167 ◽  
Author(s):  
David T. Morand

Few soil surveys in New South Wales have utilised international soil classifications. Extensive morphological and laboratory data collected during soil surveys in the Northern Rivers region provided a strong basis for correlation with the World Reference Base for Soil Resources (WRB), Soil Taxonomy (ST), and the Australian Soil Classification (ASC). Of the 32 reference soil groups comprising the WRB, 20 were present locally; nine of the 12 ST orders were present. After re-classification of soils, correlation of the ASC with the WRB and ST was undertaken. Soils not requiring extensive laboratory analysis for classification and sharing similar central concepts were the more straightforward to correlate. Several ASC orders have unique central concepts and were therefore difficult to correlate with any one WRB reference soil group or ST order/suborder. Other soils were difficult to correlate due to differences in definitions of similar diagnostic criteria. This is most applicable to soils with strong texture-contrast and those with natric conditions. Such soils are not adequately differentiated to suit the Northern Rivers conditions. Of the two international schemes, the WRB was easier to apply locally due to the relative simplicity of the scheme. Considering certain aspects of Australian soils would improve the applicability of the WRB as a truly international framework for soil classification and correlation. Amendments to both the ASC and WRB are suggested.


2021 ◽  
Vol 47 (2) ◽  
pp. 80-88
Author(s):  
Perparim Ameti ◽  
Besim Ajvazi

The main goal of this paper is to present a methodology for land evaluation by supporting decision-makers with reliable information for the land-use planning process. One of the focuses of this paper is given to the survey process and interpretation between soil survey, soil survey interpretation, and physical land evaluation. Such processes are realized using mobile mapping tools with integrated Global Position Systems (GPS) and Geographic Information Systems (GIS). Both have increased the efficiency of data communication technologies by enabling real-time communication between people located in the field and office as well. For the soil classification as a key component of soil surveys is used World Reference Base (WRB) for Soil Resources. This is a common tool to summarize the wealth of information from soil profiles for the purpose of land evaluation. The final results showed a soil classification map. Such results are derived from many activities, since it includes a preliminary land evaluation, field soil survey with auger holes and profiles as well. This methodology is used for the first time in the selected study area.


2008 ◽  
Vol 13 (4) ◽  
pp. 378 ◽  
Author(s):  
L. SLÅNBERG ◽  
L. HYLANDER

Classification of soils according to internationally agreed criteria forms a valuable base for scientifi c and political analyses. The objectives of this study were to evaluate two soil classification systems and relate them to agricultural and environmental concerns, principally phosphorus leakage, by classifying three Swedish, arable soils. The Bjärröd soil was classifi ed as a Rupti-Endogleyic Phaeozem according to the World Reference Base for Soil Resources and as a coarse-loamy, mesic Oxiaquic Hapludoll according to the Soil Taxonomy. Bjelkesta was classified as an Orthieutric Gleysol and a fi ne, frigid, Typic Endoaquept, respectively, and Götala as a Haplic Arenosol and a frigid Typic Udipsamment. We evaluated some changes to the classification systems proposed by Nordic scientists and found the classification of Bjärröd misleading and suggest it being classified as a Cambisol/Inceptisol and that information of the characteristically high base saturation in Bjelkesta and the spodic character in Götala being included in their names. This information is useful for decisions regarding agrarian and environmental management of the soils.;


2010 ◽  
Vol 59 (1) ◽  
pp. 93-98 ◽  
Author(s):  
M. Fuchs ◽  
A. Gál ◽  
E. Michéli

The soil cover of the world stores more carbon than that present in biomass and in the atmosphere, so the depth and distribution of soil organic matter (SOM) might be important in point of carbon sequestration and climate change mitigation. Texture, among several other factors, plays an important role in the distribution of SOM. Most national and the main international soil classification systems (Soil Taxonomy, World Reference Base for Soil Resources) have a separate unit for high clay content soils on the highest level of classification, as Vertisols. Due to the high swelling clay content, these soils open deep cracks when they are dry. During the process called “pedoturbation”, the high SOM content surface material falls into the cracks, where it accumulates and mixes with subsoil, and enhances the accumulation of SOM in great depth. Although the effect of texture on the stabilization, distribution and properties of SOM have been investigated, only little information is available on SOM distribution in high clay content soils. The objective of the present study was to analyze the vertical distribution of SOM in high clay content soils of Hungary. Our results, based on the investigations of the Hungarian TIM database supported the hypothesis that high clay content soils store significantly more SOM and in greater depth than other soils under similar climatic conditions.


Author(s):  
Anthony S. R. Juo ◽  
Kathrin Franzluebbers

Several pedological soil classification schemes have been developed to classify soils worldwide based on morphological features, stage of weathering, and to some extent their chemical and physical properties. Three soil classification systems are commonly used as research and teaching tools in the tropics, namely, the USDA Soil Taxonomy classification, the FAO/UNESCO World Soil Legends, and the French soil classification system. Brazil, the country with the largest land area in the tropics, has its own national soil classification system. However, soil survey, classification, and interpretation are costly and time-consuming, and few countries in the tropics have completed soil maps that are at a scale detailed enough to be useful to farmers and land users. In the absence of soil information at state, county or farm level, the authors propose a simple descriptive grouping of major soils in the tropics based on clay mineralogy to facilitate discussion on soil management and plant production in the subsequent chapters of this book. Reference to the Soil Taxonomy classification will be made when such information is available. It should be pointed out that the main purpose of this technical grouping is to provide field workers, especially those who are less familiar with the various soil classification systems, with a simple framework for planning soil management strategies. It by no means replaces the national and international soil taxonomy and classification systems that are designed for communication among soil scientists and for more detailed interpretation of soil survey data and land-use planning. This technical scheme classifies major arable soils in the tropics into four groupings according to their dominant clay mineralogy. They are • kaolinitic soils • oxidic soils • allophanic soils • smectitic soils Kaolinitic soils are deeply weathered soils with a sand, loamy sand, or sandy loam texture in the surface horizon and a clayey B horizon (20-60%). Silt content is low (< 20%) throughout the profile. Kaolinite (> 90%) is the dominant mineral in the clay fraction. These soils have an effective CEC of less than 12 cmol/kg of clay in the lower B horizon. Kaolinitic soils have a relatively high bulk density, especially in the clayey subsoil horizons (> 1.40 Mg/m3). The structure of the subsoil horizons is usually massive or blocky.


2012 ◽  
Vol 92 (3) ◽  
pp. 403-411 ◽  
Author(s):  
Jessica J. Veenstra ◽  
C. Lee Burras

Veenstra, J. J. and Burras, C. L. 2012. Effects of agriculture on the classification of Black soils in the Midwestern United States. Can. J. Soil Sci. 92: 403–411. Soil surveys are generally treated as static documents. Many soil survey users assume that pedon data generated 30 to 50 yr ago still represents today's soil, as short-term changes in soil properties are perceived to be limited to the soil surface and thus pedologically insignificant. In this study, we re-sampled and re-analyzed 82 pedons with historical descriptions and laboratory data in Iowa, United States, to evaluate changes in soil profile properties and taxonomic classification after approximately 50 yr of agricultural land use. Using historical and current data, we classified sampled pedons using Canadian Soil Taxonomy, US Soil Taxonomy and the Food and Agriculture Association World Reference Base (FAO-WRB). Our results show that soil characteristics have changed significantly enough to change the classification. In each taxonomic system, the classification of 60% or more of the sampled pedons differed from the original. Classification of 15 to 32% of the sampled pedons changed at the Order (or equivalent) level with 11 to 33% of the pedons originally classified as Black soils – Mollisols, Chernozems or Phaeozems – no longer classified as Black soils. The change in soil classification over such a short-time period challenges the validity and usefulness of treating existing soil maps as static documents as well as traditional soil classification hierarchies.


2018 ◽  
Vol 14 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Mohammad Hassan Salehi

AbstractThe two most widely used soil classifications are the Soil Taxonomy (ST) and the World Reference Base for Soil Resources (WRB). The purpose of this paper is to clarify the differences and the similarities between ST and WRB in their current state, with some examples for representative soils in arid and semi-arid regions of Iran. Four representative pedons were classified and soil units from WRB were compared to those obtained by using ST at the family level. WRB could show the status of soils polluted by heavy metals through the Toxic qualifier and its subqualifiers. On the other hand, ST could indicate the status of shallow soils in our studied soils but it was not able to show gleyic conditions and the existence of a salic horizon because of the differences in its criteria compared to those of WRB. Special effort should be made to quantify various anthropogenic activities in upcoming editions of both classification systems.


2001 ◽  
Vol 10 (1) ◽  
pp. 33-43 ◽  
Author(s):  
M. YLI-HALLA ◽  
D. L. MOKMA

Eleven pedons in an agricultural landscape at elevations 80-130 m above sea level in Jokioinen, south-western Finland were investigated and classified according to Soil Taxonomy, the FAO-Unesco system (FAO), and the World Reference Base for Soil Resources system (WRB). The soils were related to geomorphology of the landscape which is characterized by clayey fields and forested bedrock high areas covered with glacial till. A Spodosol/Podzol was found in a coarse-sandy soil in an esker while the sandy loam in a bedrock high area soils did not have an E horizon. A man-made mollic epipedon was found in a cultivated soil which had a sandy plow layer while clayey plow layers were ochric epipedons. Cambic horizons, identified by structure and redox concentrations, were common in cultivated soils. In a heavy clay soil, small slickensides and wedge-shaped aggregates, i.e., vertic characteristics, were found. Histosols occurred in local topographic depressions irrespective of the absolute elevation. According to the three classification systems, the following catenas are recognized: Haplocryods - Dystro/Eutrocryepts -Haplocryolls - Cryaquepts - Cryosaprists (Soil Taxonomy), Podzols - Regosols - Cambisols - Histosols (FAO-Unesco), and Podzols - Cambisols - Phaeozems - Gleysols - Histosols (WRB).;


2020 ◽  
Vol 22 ◽  
pp. e00296
Author(s):  
Stewart Kyebogola ◽  
Lee C. Burras ◽  
Bradley A. Miller ◽  
Onesimus Semalulu ◽  
Russell S. Yost ◽  
...  

2010 ◽  
Vol 59 (1) ◽  
pp. 57-64 ◽  
Author(s):  
V. Láng ◽  
M. Fuchs ◽  
I. Waltner ◽  
E. Michéli

The development of the recent European and global initiatives resulted in an increasing demand for harmonized digital soil information. One of the major limitations of harmonization is the great variation of field and analytical methods and classification systems. Since 1998, the World Reference Base for Soil Resources (WRB) is the global correlation scheme for soil classification and international communication. The one to one correlation of units, however, is difficult, if not impossible. Another problem is that the correct correlation of national units to WRB units might have spatial consequences. If the original map units need to be maintained, it is important to express the extent to which certain national units match with the WRB units. Taxonomic distance measurements were applied successfully to express numerically the correlation between the brown forest soil types (BFS) of the Hungarian Soil Classification System (HSCS) and WRB Reference Soil Groups (RSGs).


Sign in / Sign up

Export Citation Format

Share Document