scholarly journals Subgroups of 3-Factor Direct Products

2019 ◽  
Vol 73 (1) ◽  
pp. 19-38
Author(s):  
Daniel Neuen ◽  
Pascal Schweitzer

Abstract Extending Goursat’s Lemma we investigate the structure of subdirect products of 3-factor direct products. We construct several examples and then provide a structure theorem showing that every such group is essentially obtained by a combination of the examples. The central observation in this structure theorem is that the dependencies among the group elements in the subdirect product that involve all three factors are of Abelian nature. In the spirit of Goursat’s Lemma, for two special cases, we derive correspondence theorems between data obtained from the subgroup lattices of the three factors (as well as isomorphisms between arising factor groups) and the subdirect products. Using our results we derive an explicit formula to count the number of subdirect products of the direct product of three symmetric groups.

1960 ◽  
Vol 12 ◽  
pp. 447-462 ◽  
Author(s):  
Ruth Rebekka Struik

In this paper G = F/Fn is studied for F a free product of a finite number of cyclic groups, and Fn the normal subgroup generated by commutators of weight n. The case of n = 4 is completely treated (F/F2 is well known; F/F3 is completely treated in (2)); special cases of n > 4 are studied; a partial conjecture is offered in regard to the unsolved cases. For n = 4 a multiplication table and other properties are given.The problem arose from Golovin's work on nilpotent products ((1), (2), (3)) which are of interest because they are generalizations of the free and direct product of groups: all nilpotent groups are factor groups of nilpotent products in the same sense that all groups are factor groups of free products, and all Abelian groups are factor groups of direct products. In particular (as is well known) every finite Abelian group is a direct product of cyclic groups. Hence it becomes of interest to investigate nilpotent products of finite cyclic groups.


Author(s):  
Peter Hauck

AbstractA group G is called normally (subnormally) detectable if the only normal (subnormal) subgroups in any direct product G1 × … × Gn of copies of G are just the direct factors Gi. We give an internal characterization of finite subnormally detectable groups and obtain analogous results for associative rings and for Lie algebras. The main part of the paper deals with a study of normally detectable groups, where we verify a conjecture of T. O. Hawkes in a number of special cases.


2020 ◽  
Vol 30 (4) ◽  
pp. 243-255
Author(s):  
Dmitry A. Burov

AbstractWe study subgroups of the direct product of two groups invariant under the action of permutations on factors. An invariance criterion for the subdirect product of two groups under the action of permutations on factors is put forward. Under certain additional constraints on permutations, we describe the subgroups of the direct product of a finite number of groups that are invariant under the action of permutations on factors. We describe the subgroups of the additive group of vector space over a finite field of characteristic 2 which are invariant under the coordinatewise action of inversion permutation of nonzero elements of the field.


2019 ◽  
Vol 109 (1) ◽  
pp. 24-35
Author(s):  
ASHLEY CLAYTON ◽  
NIK RUŠKUC

The direct product $\mathbb{N}\times \mathbb{N}$ of two free monogenic semigroups contains uncountably many pairwise nonisomorphic subdirect products. Furthermore, the following hold for $\mathbb{N}\times S$, where $S$ is a finite semigroup. It contains only countably many pairwise nonisomorphic subsemigroups if and only if $S$ is a union of groups. And it contains only countably many pairwise nonisomorphic subdirect products if and only if every element of $S$ has a relative left or right identity element.


2001 ◽  
Vol 26 (9) ◽  
pp. 539-545
Author(s):  
P. Mukhopadhyay

Bandelt and Petrich (1982) proved that an inversive semiringSis a subdirect product of a distributive lattice and a ring if and only ifSsatisfies certain conditions. The aim of this paper is to obtain a generalized version of this result. The main purpose of this paper however, is to investigate, what new necessary and sufficient conditions need we impose on an inversive semiring, so that, in its aforesaid representation as a subdirect product, the “ring” involved can be gradually enriched to a “field.” Finally, we provide a construction of fullE-inversive semirings, which are subdirect products of a semilattice and a ring.


2001 ◽  
Vol 44 (2) ◽  
pp. 379-388 ◽  
Author(s):  
Erhard Aichinger

AbstractLet $N$ be a zero-symmetric near-ring with identity, and let $\sGa$ be a faithful tame $N$-group. We characterize those ideals of $\sGa$ that are the range of some idempotent element of $N$. Using these idempotents, we show that the polynomials on the direct product of the finite $\sOm$-groups $V_1,V_2,\dots,V_n$ can be studied componentwise if and only if $\prod_{i=1}^nV_i$ has no skew congruences.AMS 2000 Mathematics subject classification: Primary 16Y30. Secondary 08A40


10.37236/6999 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Richard H. Hammack ◽  
Wilfried Imrich

It is known that for graphs $A$ and $B$ with odd cycles, the direct product $A\times B$ is vertex-transitive if and only if both $A$ and $B$ are vertex-transitive. But this is not necessarily true if one of $A$ or $B$ is bipartite, and until now there has been no characterization of such vertex-transitive direct products. We prove that if $A$ and $B$ are both bipartite, or both non-bipartite, then $A\times B$ is vertex-transitive if and only if both $A$ and $B$ are vertex-transitive. Also, if $A$ has an odd cycle and $B$ is bipartite, then $A\times B$ is vertex-transitive if and only if both $A\times K_2$ and $B$ are vertex-transitive.


1966 ◽  
Vol 18 ◽  
pp. 1004-1014 ◽  
Author(s):  
Richard A. Alo ◽  
Orrin Frink

A number of different ways of defining topologies in a lattice or partially ordered set in terms of the order relation are known. Three of these methods have proved to be useful and convenient for lattices of special types, namely the ideal topology, the interval topology, and the new interval topology of Garrett Birkhoff. In another paper (2) we have shown that these three topologies are equivalent for chains (totally ordered sets), where they reduce to the usual intrinsic topology of the chain.Since many important lattices are either direct products of chains or sublattices of such products, it is natural to ask what relationships exist between the various order topologies of a direct product of lattices and those of the lattices themselves.


1983 ◽  
Vol 26 (2) ◽  
pp. 233-240 ◽  
Author(s):  
Paul Milnes

AbstractA classical result of I. Glicksberg and K. de Leeuw asserts that the almost periodic compactification of a direct product S × T of abelian semigroups with identity is (canonically isomorphic to) the direct product of the almost periodic compactiflcations of S and T. Some efforts have been made to generalize this result and recently H. D. Junghenn and B. T. Lerner have proved a theorem giving necessary and sufficient conditions for an F-compactification of a semidirect product S⊗σT to be a semidirect product of compactiflcations of S and T. A different such theorem is presented here along with a number of corollaries and examples which illustrate its scope and limitations. Some behaviour that can occur for semidirect products, but not for direct products, is exposed


1979 ◽  
Vol 44 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Steven Garavaglia

This paper is mainly concerned with describing complete theories of modules by decomposing them (up to elementary equivalence) into direct products of simpler modules. In §1, I give a decomposition theorem which works for arbitrary direct product theories T. Given such a T, I define T-indecomposable structures and show that every model of T is elementarily equivalent to a direct product of T-indecomposable models of T. In §2, I show that if R is a commutative ring then every R-module is elementarily equivalent to ΠMM where M ranges over the maximal ideals of R and M is the localization of at M. This is applied to prove that if R is a commutative von Neumann regular ring and TR is the theory of R-modules then the TR-indecomposables are precisely the cyclic modules of the form R/M where M is a maximal ideal. In §3, I use the decomposition established in §2 to characterize the ω1-categorical and ω-stable modules over a countable commutative von Neumann regular ring and the superstable modules over a commutative von Neumann regular ring of arbitrary cardinality. In the process, I also prove several general characterizations of ω-stable and superstable modules; e.g., if R is any countable ring, then an R-moduIe is ω-stable if and only if every R-module elementarily equivalent to it is equationally compact.


Sign in / Sign up

Export Citation Format

Share Document