scholarly journals Analysis of the Hybrid Global Path Planning Algorithm for Different Environments

2019 ◽  
Vol 20 (1) ◽  
pp. 1-11
Author(s):  
Paulius Skačkauskas ◽  
Edgar Sokolovskij

Abstract To achieve the overall goal of realising an efficient and advantageous participation of autonomous ground vehicles in the transport system as fast as possible, a lot of work is being done in different and specific research fields. One of the most important research fields, which has a large impact on safe autonomous ground vehicle realisation, is the development of path planning algorithms. Therefore, this work describes in detail the development and application of a hybrid path planning algorithm. The described algorithm is based on classical and heuristic path planning approaches and can be applied in unstructured and structured environments. The efficiency of the algorithm was investigated by applying the algorithm and executing theoretical and experimental tests. The theoretical and experimental tests were executed while optimising different complexity paths. Results analysis demonstrated that the described algorithm can generate a smooth, dynamically feasible and collision-free path.

2018 ◽  
Vol 06 (04) ◽  
pp. 251-266
Author(s):  
Phillip J. Durst ◽  
Christopher T. Goodin ◽  
Cindy L. Bethel ◽  
Derek T. Anderson ◽  
Daniel W. Carruth ◽  
...  

Path planning plays an integral role in mission planning for ground vehicle operations in urban areas. Determining the optimum path through an urban area is a well-understood problem for traditional ground vehicles; however, in the case of autonomous unmanned ground vehicles (UGVs), additional factors must be considered. For an autonomous UGV, perception algorithms rather than platform mobility will be the limiting factor in operational capabilities. For this study, perception was incorporated into the path planning process by associating sensor error costs with traveling through nodes within an urban road network. Three common perception sensors were used for this study: GPS, LIDAR, and IMU. Multiple set aggregation operators were used to blend the sensor error costs into a single cost, and the effects of choice of aggregation operator on the chosen path were observed. To provide a robust path planning ability, a fuzzy route planning algorithm was developed using membership functions and fuzzy rules to allow for qualitative route planning in the case of generalized UGV performance. The fuzzy membership functions were then applied to several paths through the urban area to determine what sensors were optimized in each path to provide a measure of the UGV’s performance capabilities. The research presented in this paper shows the impacts that sensing/perception has on ground vehicle route planning by demonstrating a fuzzy route planning algorithm constructed by using a robust rule set that quantifies these impacts.


Sign in / Sign up

Export Citation Format

Share Document