Palaeoflood Records from Upper Kaveri River, Southern India: Evidence for Discrete Floods During Holocene

2010 ◽  
Vol 37 (-1) ◽  
pp. 49-55 ◽  
Author(s):  
Vishwas Kale ◽  
Hema Achyuthan ◽  
Manoj Jaiswal ◽  
Somasis Sengupta

Palaeoflood Records from Upper Kaveri River, Southern India: Evidence for Discrete Floods During Holocene A record of six discrete middle Holocene floods has been established based on sedimentological and stratigraphical studies in the upper Kaveri catchment at Siddapur. The flood events are represented by six discrete, sharp-bounded, sand-silt couplets. Texturally and geochemically the suite of couplets is quite distinct from the overlying and underlying structureless fluvial deposits. Based on OSL ages the suite of couplets cover the Holocene from ~8 to ~2 ka. Such evidence is not present or reported from any other river originating in the Western Ghat in the Indian Peninsula. We argue that the six couplets represent short-term, high discharge events or flash floods. The initiation of this phase of flash floods broadly corresponds with the southward migration of ITCZ and a gradual decline in Indian summer monsoon precipitation starting at ~7.8 ka. Comparison of the elevation of the highest couplet with the high flood level (HFL) of the 1961 extraordinary flood on Kaveri demonstrates that the 20th century flood was higher than the mid-Holocene palaeofloods.

2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Konrad Nering

AbstractThis paper describes a fully functional short-term flood prediction system. Its effect has been tested on watershed of Lubieńka river in Małopolska. To use this system it must have a data set also described in this paper. A modification of the system to adopt for predicting flash floods was described. Full operation of the system is shown on example of real flood on Lubieńka river in June 2011.


2020 ◽  
Vol 163 (4) ◽  
pp. 2153-2171
Author(s):  
Reza Marsooli ◽  
Ning Lin

AbstractSea level rise (SLR) and tropical cyclone (TC) climatology change could impact future flood hazards in Jamaica Bay—an urbanized back-barrier bay in New York—yet their compound impacts are not well understood. This study estimates the compound effects of SLR and TC climatology change on flood hazards in Jamaica Bay from a historical period in the late twentieth century (1980–2000) to future periods in the mid- and late-twenty-first century (2030–2050 and 2080–2100, under RCP8.5 greenhouse gas concentration scenario). Flood return periods are estimated based on probabilistic projections of SLR and peak storm tides simulated by a hydrodynamic model for large numbers of synthetic TCs. We find a substantial increase in the future flood hazards, e.g., the historical 100-year flood level would become a 9- and 1-year flood level in the mid- and late-twenty-first century and the 500-year flood level would become a 143- and 4-year flood level. These increases are mainly induced by SLR. However, TC climatology change would considerably contribute to the future increase in low-probability, high-consequence flood levels (with a return period greater than 100 year), likely due to an increase in the probability of occurrence of slow-moving but intense TCs by the end of twenty-first century. We further conduct high-resolution coastal flood simulations for a series of SLR and TC scenarios. Due to the SLR projected with a 5% exceedance probability, 125- and 1300-year flood events in the late-twentieth century would become 74- and 515-year flood events, respectively, in the late-twenty-first century, and the spatial extent of flooding over coastal floodplains of Jamaica Bay would increase by nearly 10 and 4 times, respectively. In addition, SLR leads to larger surface waves induced by TCs in the bay, suggesting a potential increase in hazards associated with wave runup, erosion, and damage to coastal infrastructure.


2017 ◽  
Vol 2017 ◽  
pp. 1-20 ◽  
Author(s):  
Mehwish Ramzan ◽  
Suryun Ham ◽  
Muhammad Amjad ◽  
Eun-Chul Chang ◽  
Kei Yoshimura

Sensitivity experiments testing two scale-selective bias correction (SSBC) methods have been carried out to identify an optimal spectral nudging scheme for historical dynamically downscaled simulations of South Asia, using the coordinated regional climate downscaling experiment (CORDEX) protocol and the regional spectral model (RSM). Two time periods were selected under the category of short-term extreme summer and long-term decadal analysis. The new SSBC version applied nudging to full wind components, with an increased relaxation time in the lower model layers, incorporating a vertical weighted damping coefficient. An evaluation of the extraordinary weather conditions experienced in South Asia in the summer of 2005 confirmed the advantages of the new SSBC when modeling monsoon precipitation. Furthermore, the new SSBC scheme was found to predict precipitation and wind patterns more accurately than the older version in decadal analysis, which applies nudging only to the rotational wind field, with a constant strength at all heights.


2016 ◽  
Vol 64 (4) ◽  
pp. 304-315 ◽  
Author(s):  
Kamila Hlavčová ◽  
Silvia Kohnová ◽  
Marco Borga ◽  
Oliver Horvát ◽  
Pavel Šťastný ◽  
...  

Abstract This work examines the main features of the flash flood regime in Central Europe as revealed by an analysis of flash floods that have occurred in Slovakia. The work is organized into the following two parts: The first part focuses on estimating the rainfall-runoff relationships for 3 major flash flood events, which were among the most severe events since 1998 and caused a loss of lives and a large amount of damage. The selected flash floods occurred on the 20th of July, 1998, in the Malá Svinka and Dubovický Creek basins; the 24th of July, 2001, at Štrbský Creek; and the 19th of June, 2004, at Turniansky Creek. The analysis aims to assess the flash flood peaks and rainfall-runoff properties by combining post-flood surveys and the application of hydrological and hydraulic post-event analyses. Next, a spatially-distributed hydrological model based on the availability of the raster information of the landscape’s topography, soil and vegetation properties, and rainfall data was used to simulate the runoff. The results from the application of the distributed hydrological model were used to analyse the consistency of the surveyed peak discharges with respect to the estimated rainfall properties and drainage basins. In the second part these data were combined with observations from flash flood events which were observed during the last 100 years and are focused on an analysis of the relationship between the flood peaks and the catchment area. The envelope curve was shown to exhibit a more pronounced decrease with the catchment size with respect to other flash flood relationships found in the Mediterranean region. The differences between the two relationships mainly reflect changes in the coverage of the storm sizes and hydrological characteristics between the two regions.


2018 ◽  
Vol 7 (4.38) ◽  
pp. 1310
Author(s):  
Prof. Dr. Ir Vinesh Thiruchelvam ◽  
Mbau Stella Nyambura

The cost of climate change has increased phenomenally in recent years. Therefore, understanding climate change and its impacts, that are likely to get worse and worse into the future, gives us the ability to predict scenarios and plan for them. Flash floods, which are a common result of climate change, follow increased precipitation which then increases risk and associated vulnerability due to the unpredictable rainfall patterns. Developing countries suffer grave consequences in the event that weather disasters strike because they have the least adaptive capacity. At the equator where the hot days are hotter and winds carrying rainfall move faster, Kenya’s Tana River County is noted for its vulnerability towards flash floods. Additionally, this county and others that are classified as rural areas in Kenya do not receive short term early warnings for floods. This county was therefore selected as the study area for its vulnerability. The aim of the study is therefore to propose a flash flood early warning system framework that delivers short term early warnings. Using questionnaires, information about the existing warning system will be collected and analyzed using SPSS. The results will be used to interpret the relationships between variables of the study, with a particular interest in the moderation effect in order to confirm that the existing system can be modified; that is, if the moderation effect is confirmed.       


2021 ◽  
pp. 3-34
Author(s):  
Sameh A. Kantoush ◽  
Mohamed Saber ◽  
Mohammed Abdel-Fattah ◽  
Tetsuya Sumi

AbstractSustainable management of wadi flash flood (WFF) risks is desperately needed to secure development in wadi systems. Due to rapid flow generation with sudden high flood peaks, spatiotemporal variability of rainfall occurrence, and poorly sited rapid development, most Middle East and North Africa (MENA) region have no comprehensive proper protection from WFFs. In arid regions, single mitigation measures, including storage dams, recharge dams, artificial lakes and embankments, are implemented, although soft mitigation measures are not dominant, such as early warning systems. The single management strategy under climate change impacts is not adequate to reduce flash flood risks; an integrated strategy is required. The objective of the international symposium on flash floods (ISFF) project has been to develop scientific understanding of WFFs in wadi systems; monitor, model, and mitigate; issue warnings; and plan urban development by discussing and networking the strategies in the MENA region. To achieve this goal, the project defines priorities for future research challenges and potential projects for WFFs. This chapter provides a state-of-the-art scientific basis in terms of integrated flash flood management. Further, priorities are defined for the main research gaps, and the emerging research methodologies can contribute to guide the management of WFFs in such regions.


2018 ◽  
Vol 7 (4.38) ◽  
pp. 810
Author(s):  
Prof. Dr. Ir Vinesh Thiruchelvam ◽  
Mbau Stella Nyambura

The cost of climate change has increased phenomenally in recent years. Therefore, understanding climate change and its impacts, that are likely to get worse and worse into the future, gives us the ability to predict scenarios and plan for them. Flash floods, which are a common result of climate change, follow increased precipitation which then increases risk and associated vulnerability due to the unpredictable rainfall patterns. Developing countries suffer grave consequences in the event that weather disasters strike because they have the least adaptive capacity. At the equator where the hot days are hotter and winds carrying rainfall move faster, Kenya’s Tana River County is noted for its vulnerability towards flash floods. Additionally, this county and others that are classified as rural areas in Kenya do not receive short term early warnings for floods. This county was therefore selected as the study area for its vulnerability. The aim of the study is therefore to propose a flash flood early warning system framework that delivers short term early warnings. Using questionnaires, information about the existing warning system will be collected and analyzed using SPSS. The results will be used to interpret the relationships between variables of the study, with a particular interest in the moderation effect in order to confirm that the existing system can be modified; that is, if the moderation effect is confirmed.   


2020 ◽  
Author(s):  
◽  
Erick Nyangari

Rains in the Mojave Desert region are intense and result in the destruction of property. This destruction is significant and affects development plans in the area. Joshua Tree National Park (JTNP) is one of the areas affected as a result of flash floods in the Mojave Desert region. As part of the efforts to minimize the effects caused by flash floods in the park, there was a need to carry out a hydrological analysis of surface runoff in order to map out high risk areas that are susceptible to floods after Monsoonal rains, identify areas in the park that require diversion berms, and establish the effectiveness of the existing diversion berms. The analysis result was a 3D topographic model and a map that contains high flood risk areas and potential areas where diversion berms may be constructed to divert surface runoff and protect the park’s infrastructure.


Sign in / Sign up

Export Citation Format

Share Document