scholarly journals A novel fuzzy c-regression model algorithm using a new error measure and particle swarm optimization

Author(s):  
Moêz Soltani ◽  
Abdelkader Chaari ◽  
Fayçal Ben Hmida

Abstract This paper presents a new algorithm for fuzzy c-regression model clustering. The proposed methodology is based on adding a second regularization term in the objective function of a Fuzzy C-Regression Model (FCRM) clustering algorithm in order to take into account noisy data. In addition, a new error measure is used in the objective function of the FCRM algorithm, replacing the one used in this type of algorithm. Then, particle swarm optimization is employed to finally tune parameters of the obtained fuzzy model. The orthogonal least squares method is used to identify the unknown parameters of the local linear model. Finally, validation results of two examples are given to demonstrate the effectiveness and practicality of the proposed algorithm.

Author(s):  
Moez Soltani ◽  
Abdelkader Chaari

This paper presents a new method for fuzzy c-regression models clustering algorithm. The main motivation for this work is to develop an identification procedure for nonlinear systems using weighted recursive least squares and particle swarm optimization. The fuzzy c-regression models algorithm is sensitive to initialization which leads to the convergence to a local minimum of the objective function. In order to overcome this problem, particle swarm optimization is employed to achieve global optimization of FCRM and to finally tune parameters of obtained fuzzy model. The weighted recursive least squares is used to identify the unknown parameters of the local linear model. Finally, validation results involving simulation of two examples have demonstrated the effectiveness and practicality of the proposed algorithm.


2015 ◽  
Vol 785 ◽  
pp. 495-499
Author(s):  
Siti Amely Jumaat ◽  
Ismail Musirin

The paper presents a comparison of performance Static Var Compensator (SVC) and Thyristor Controlled Series Compensator (TCSC) with objective function to minimize the transmission loss, improve the voltage and monitoring the cost of installation. Simulation performed on standard IEEE 30-Bus RTS and indicated that EPSO a feasible to achieve the objective function.


Author(s):  
Kun-Yung Chen ◽  
Te-Wen Tu

Abstract An inverse methodology is proposed to estimate a time-varying heat transfer coefficient (HTC) for a hollow cylinder with time-dependent boundary conditions of different kinds on inner and outer surfaces. The temperatures at both the inner surface and the interior domain are measured for the hollow cylinder, while the time history of HTC of the outer surface will be inversely determined. This work first expressed the unknown function of HTC in a general form with unknown coefficients, and then regarded these unknown coefficients as the estimated parameters which can be randomly searched and found by the self-learning particle swarm optimization (SLPSO) method. The objective function which wants to be minimized was found with the absolute errors between the measured and estimated temperatures at several measurement times. If the objective function converges toward the null, the inverse solution of the estimated HTC will be found eventually. From numerical experiments, when the function of HTC with exponential type is performed, the unknown coefficients of the HTC function can be accurately estimated. On the contrary, when the function of HTC with a general type is conducted, the unknown coefficients of HTC are poorly estimated. However, the estimated coefficients of an HTC function with the general type can be regarded as the equivalent coefficients for the real function of HTC.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Angelo Marcio Oliveira Sant’Anna

PurposeE-waste management can reduce relevant impact of the business activity without affecting reliability, quality or performance. Statistical process monitoring is an effective way for managing reliability and quality to devices in manufacturing processes. This paper proposes an approach for monitoring the proportion of e-waste devices based on Beta regression model and particle swarm optimization. A statistical process monitoring scheme integrating residual useful life techniques for efficient monitoring of e-waste components or equipment was developed.Design/methodology/approachAn approach integrating regression method and particle swarm optimization algorithm was developed for increasing the accuracy of regression model estimates. The control chart tools were used for monitoring the proportion of e-waste devices from fault detection of electronic devices in manufacturing process.FindingsThe results showed that the proposed statistical process monitoring was an excellent reliability and quality scheme for monitoring the proportion of e-waste devices in toner manufacturing process. The optimized regression model estimates showed a significant influence of the process variables for both individually injection rate and toner treads and the interactions between injection rate, toner treads, viscosity and density.Originality/valueThis research is different from others by providing an approach for modeling and monitoring the proportion of e-waste devices. Statistical process monitoring can be used to monitor waste product in manufacturing. Besides, the key contribution in this study is to develop different models for fault detection and identify any change point in the manufacturing process. The optimized model used can be replicated to other Electronic Industry and allows support of a satisfactory e-waste management.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
S. Sakinah S. Ahmad ◽  
Witold Pedrycz

The study is concerned with data and feature reduction in fuzzy modeling. As these reduction activities are advantageous to fuzzy models in terms of both the effectiveness of their construction and the interpretation of the resulting models, their realization deserves particular attention. The formation of a subset of meaningful features and a subset of essential instances is discussed in the context of fuzzy-rule-based models. In contrast to the existing studies, which are focused predominantly on feature selection (namely, a reduction of the input space), a position advocated here is that a reduction has to involve both data and features to become efficient to the design of fuzzy model. The reduction problem is combinatorial in its nature and, as such, calls for the use of advanced optimization techniques. In this study, we use a technique of particle swarm optimization (PSO) as an optimization vehicle of forming a subset of features and data (instances) to design a fuzzy model. Given the dimensionality of the problem (as the search space involves both features and instances), we discuss a cooperative version of the PSO along with a clustering mechanism of forming a partition of the overall search space. Finally, a series of numeric experiments using several machine learning data sets is presented.


Sign in / Sign up

Export Citation Format

Share Document