scholarly journals Probability Measure on Discrete Spaces and Algebra of Real-Valued Random Variables

2010 ◽  
Vol 18 (4) ◽  
pp. 213-217
Author(s):  
Hiroyuki Okazaki ◽  
Yasunari Shidama

Probability Measure on Discrete Spaces and Algebra of Real-Valued Random Variables In this article we continue formalizing probability and randomness started in [13], where we formalized some theorems concerning the probability and real-valued random variables. In this paper we formalize the variance of a random variable and prove Chebyshev's inequality. Next we formalize the product probability measure on the Cartesian product of discrete spaces. In the final part of this article we define the algebra of real-valued random variables.

2012 ◽  
Vol 4 (1) ◽  
pp. 217
Author(s):  
Pangeran B.H.P ◽  
Hendra Gunawan

We study Chebyshev’s Inequality and example of its application on the expectation of a continuous random variable. In addition, we also discussed the inequality on determinant form.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yoon Tae Kim ◽  
Hyun Suk Park

In this paper, we consider a quantitative fourth moment theorem for functions (random variables) defined on the Markov triple E , μ , Γ , where μ is a probability measure and Γ is the carré du champ operator. A new technique is developed to derive the fourth moment bound in a normal approximation on the random variable of a general Markov diffusion generator, not necessarily belonging to a fixed eigenspace, while previous works deal with only random variables to belong to a fixed eigenspace. As this technique will be applied to the works studied by Bourguin et al. (2019), we obtain the new result in the case where the chaos grade of an eigenfunction of Markov diffusion generator is greater than two. Also, we introduce the chaos grade of a new notion, called the lower chaos grade, to find a better estimate than the previous one.


2018 ◽  
Vol 26 (1) ◽  
pp. 1-9
Author(s):  
Peter Jaeger

Summary Using the Mizar system [1], [5], we start to show, that the Call-Option, the Put-Option and the Straddle (more generally defined as in the literature) are random variables ([4], p. 15), see (Def. 1) and (Def. 2). Next we construct and prove the simple random variables ([2], p. 14) in (Def. 8). In the third section, we introduce the definition of arbitrage opportunity, see (Def. 12). Next we show, that this definition can be characterized in a different way (Lemma 1.3. in [4], p. 5), see (17). In our formalization for Lemma 1.3 we make the assumption that ϕ is a sequence of real numbers (there are only finitely many valued of interest, the values of ϕ in Rd). For the definition of almost sure with probability 1 see p. 6 in [2]. Last we introduce the risk-neutral probability (Definition 1.4, p. 6 in [4]), here see (Def. 16). We give an example in real world: Suppose you have some assets like bonds (riskless assets). Then we can fix our price for these bonds with x for today and x · (1 + r) for tomorrow, r is the interest rate. So we simply assume, that in every possible market evolution of tomorrow we have a determinated value. Then every probability measure of Ωfut1 is a risk-neutral measure, see (21). This example shows the existence of some risk-neutral measure. If you find more than one of them, you can determine – with an additional conidition to the probability measures – whether a market model is arbitrage free or not (see Theorem 1.6. in [4], p. 6.) A short graph for (21): Suppose we have a portfolio with many (in this example infinitely many) assets. For asset d we have the price π(d) for today, and the price π(d) (1 + r) for tomorrow with some interest rate r > 0. Let G be a sequence of random variables on Ωfut1, Borel sets. So you have many functions fk : {1, 2, 3, 4}→ R with G(k) = fk and fk is a random variable of Ωfut1, Borel sets. For every fk we have fk(w) = π(k)·(1+r) for w {1, 2, 3, 4}. $$\matrix{ {Today} & {Tomorrow} \cr {{\rm{only}}\,{\rm{one}}\,{\rm{scenario}}} & {\left\{ {\matrix{ {w_{21} = \left\{ {1,2} \right\}} \hfill \cr {w_{22} = \left\{ {3,4} \right\}} \hfill \cr } } \right.} \cr {{\rm{for}}\,{\rm{all}}\,d \in N\,{\rm{holds}}\,\pi \left( d \right)} & {\left\{ {\matrix{ {f_d \left( w \right) = G\left( d \right)\left( w \right) = \pi \left( d \right) \cdot \left( {1 + r} \right),} \hfill \cr {w \in w_{21} \,or\,w \in w_{22} ,} \hfill \cr {r > 0\,{\rm{is}}\,{\rm{the}}\,{\rm{interest}}\,{\rm{rate}}.} \hfill \cr } } \right.} \cr }$$ Here, every probability measure of Ωfut1 is a risk-neutral measure.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 981
Author(s):  
Patricia Ortega-Jiménez ◽  
Miguel A. Sordo ◽  
Alfonso Suárez-Llorens

The aim of this paper is twofold. First, we show that the expectation of the absolute value of the difference between two copies, not necessarily independent, of a random variable is a measure of its variability in the sense of Bickel and Lehmann (1979). Moreover, if the two copies are negatively dependent through stochastic ordering, this measure is subadditive. The second purpose of this paper is to provide sufficient conditions for comparing several distances between pairs of random variables (with possibly different distribution functions) in terms of various stochastic orderings. Applications in actuarial and financial risk management are given.


2021 ◽  
Vol 19 (1) ◽  
pp. 284-296
Author(s):  
Hye Kyung Kim

Abstract Many mathematicians have studied degenerate versions of quite a few special polynomials and numbers since Carlitz’s work (Utilitas Math. 15 (1979), 51–88). Recently, Kim et al. studied the degenerate gamma random variables, discrete degenerate random variables and two-variable degenerate Bell polynomials associated with Poisson degenerate central moments, etc. This paper is divided into two parts. In the first part, we introduce a new type of degenerate Bell polynomials associated with degenerate Poisson random variables with parameter α > 0 \alpha \hspace{-0.15em}\gt \hspace{-0.15em}0 , called the fully degenerate Bell polynomials. We derive some combinatorial identities for the fully degenerate Bell polynomials related to the n n th moment of the degenerate Poisson random variable, special numbers and polynomials. In the second part, we consider the fully degenerate Bell polynomials associated with degenerate Poisson random variables with two parameters α > 0 \alpha \gt 0 and β > 0 \beta \hspace{-0.15em}\gt \hspace{-0.15em}0 , called the two-variable fully degenerate Bell polynomials. We show their connection with the degenerate Poisson central moments, special numbers and polynomials.


2021 ◽  
Vol 73 (1) ◽  
pp. 62-67
Author(s):  
Ibrahim A. Ahmad ◽  
A. R. Mugdadi

For a sequence of independent, identically distributed random variable (iid rv's) [Formula: see text] and a sequence of integer-valued random variables [Formula: see text], define the random quantiles as [Formula: see text], where [Formula: see text] denote the largest integer less than or equal to [Formula: see text], and [Formula: see text] the [Formula: see text]th order statistic in a sample [Formula: see text] and [Formula: see text]. In this note, the limiting distribution and its exact order approximation are obtained for [Formula: see text]. The limiting distribution result we obtain extends the work of several including Wretman[Formula: see text]. The exact order of normal approximation generalizes the fixed sample size results of Reiss[Formula: see text]. AMS 2000 subject classification: 60F12; 60F05; 62G30.


2007 ◽  
Vol 21 (3) ◽  
pp. 361-380 ◽  
Author(s):  
Refael Hassin

This article deals with the effect of information and uncertainty on profits in an unobservable single-server queuing system. We consider scenarios in which the service rate, the service quality, or the waiting conditions are random variables that are known to the server but not to the customers. We ask whether the server is motivated to reveal these parameters. We investigate the structure of the profit function and its sensitivity to the variance of the random variable. We consider and compare variations of the model according to whether the server can modify the service price after observing the realization of the random variable.


1987 ◽  
Vol 102 (2) ◽  
pp. 329-349 ◽  
Author(s):  
Philip S. Griffin ◽  
William E. Pruitt

Let X, X1, X2,… be a sequence of non-degenerate i.i.d. random variables with common distribution function F. For 1 ≤ j ≤ n, let mn(j) be the number of Xi satisfying either |Xi| > |Xj|, 1 ≤ i ≤ n, or |Xi| = |Xj|, 1 ≤ i ≤ j, and let (r)Xn = Xj if mn(j) = r. Thus (r)Xn is the rth largest random variable in absolute value from amongst X1, …, Xn with ties being broken according to the order in which the random variables occur. Set (r)Sn = (r+1)Xn + … + (n)Xn and write Sn for (0)Sn. We will refer to (r)Sn as a trimmed sum.


Sign in / Sign up

Export Citation Format

Share Document