scholarly journals Isomorphisms of Direct Products of Finite Cyclic Groups

2012 ◽  
Vol 20 (4) ◽  
pp. 343-347
Author(s):  
Kenichi Arai ◽  
Hiroyuki Okazaki ◽  
Yasunari Shidama

Summary In this article, we formalize that every finite cyclic group is isomorphic to a direct product of finite cyclic groups which orders are relative prime. This theorem is closely related to the Chinese Remainder theorem ([18]) and is a useful lemma to prove the basis theorem for finite abelian groups and the fundamental theorem of finite abelian groups. Moreover, we formalize some facts about the product of a finite sequence of abelian groups.

2016 ◽  
Vol 25 (5) ◽  
pp. 641-644
Author(s):  
BÉLA BAJNOK

The main result in Y. O. Hamidoune's paper ‘Adding distinct congruence classes' (Combin. Probab. Comput.7 (1998) 81–87) is as follows. If S is a generating subset of a cyclic group G such that 0 ∉ S and |S| ⩾ 5, then the number of sums of the subsets of S is at least min(|G|, 2|S|). Unfortunately, the argument of the author, who, sadly, passed away in 2011, relies on a lemma whose proof is incorrect; in fact, the lemma is false for all cyclic groups of even order. In this short note we point out this mistake, correct the proof, and discuss why the main result is actually true for all finite abelian groups.


2013 ◽  
Vol 21 (3) ◽  
pp. 207-211
Author(s):  
Hiroshi Yamazaki ◽  
Hiroyuki Okazaki ◽  
Kazuhisa Nakasho ◽  
Yasunari Shidama

Summary In this paper we formalized some theorems concerning the cyclic groups of prime power order. We formalize that every commutative cyclic group of prime power order is isomorphic to a direct product of family of cyclic groups [1], [18].


2005 ◽  
Vol 71 (3) ◽  
pp. 487-492
Author(s):  
Markku Niemenmaa

If the inner mapping group of a loop is a finite Abelian group, then the loop is centrally nilpotent. We first investigate the structure of those finite Abelian groups which are not isomorphic to inner mapping groups of loops and after this we show that if the inner mapping group of a loop is isomorphic to the direct product of two cyclic groups of the same odd prime power order pn, then our loop is centrally nilpotent of class at most n + 1.


1960 ◽  
Vol 12 ◽  
pp. 447-462 ◽  
Author(s):  
Ruth Rebekka Struik

In this paper G = F/Fn is studied for F a free product of a finite number of cyclic groups, and Fn the normal subgroup generated by commutators of weight n. The case of n = 4 is completely treated (F/F2 is well known; F/F3 is completely treated in (2)); special cases of n > 4 are studied; a partial conjecture is offered in regard to the unsolved cases. For n = 4 a multiplication table and other properties are given.The problem arose from Golovin's work on nilpotent products ((1), (2), (3)) which are of interest because they are generalizations of the free and direct product of groups: all nilpotent groups are factor groups of nilpotent products in the same sense that all groups are factor groups of free products, and all Abelian groups are factor groups of direct products. In particular (as is well known) every finite Abelian group is a direct product of cyclic groups. Hence it becomes of interest to investigate nilpotent products of finite cyclic groups.


1979 ◽  
Vol 22 (1) ◽  
pp. 17-21 ◽  
Author(s):  
A. D. Sands

Keller (6) considered a generalisation of a problem of Minkowski (7) concerning the filling of Rn by congruent cubes. Hajós (4) reduced Minkowski's conjecture to a problem concerning the factorization of finite abelian groups and then solved this problem. In a similar manner Hajós (5) reduced Keller's conjecture to a problem in the factorization of finite abelian groups, but this problem remains unsolved, in general. It occurs also as Problem 80 in Fuchs (3). Seitz (10) has obtained a solution for cyclic groups of prime power order. In this paper we present a solution for cyclic groups whose order is the product of two prime powers.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1537 ◽  
Author(s):  
Lingling Han ◽  
Xiuyun Guo

In this paper, we mainly count the number of subgroup chains of a finite nilpotent group. We derive a recursive formula that reduces the counting problem to that of finite p-groups. As applications of our main result, the classification problem of distinct fuzzy subgroups of finite abelian groups is reduced to that of finite abelian p-groups. In particular, an explicit recursive formula for the number of distinct fuzzy subgroups of a finite abelian group whose Sylow subgroups are cyclic groups or elementary abelian groups is given.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 294
Author(s):  
Daniel López-Aguayo ◽  
Servando López Aguayo

We extend the concepts of antimorphism and antiautomorphism of the additive group of integers modulo n, given by Gaitanas Konstantinos, to abelian groups. We give a lower bound for the number of antiautomorphisms of cyclic groups of odd order and give an exact formula for the number of linear antiautomorphisms of cyclic groups of odd order. Finally, we give a partial classification of the finite abelian groups which admit antiautomorphisms and state some open questions.


Sign in / Sign up

Export Citation Format

Share Document